Blind weave detection for woven fabrics
详细信息    查看全文
  • 作者:Dorian Schneider ; Dorit Merhof
  • 关键词:Woven fabric analysis ; Weave pattern ; Binding ; Yarn density measurement ; Fabric database
  • 刊名:Pattern Analysis & Applications
  • 出版年:2015
  • 出版时间:August 2015
  • 年:2015
  • 卷:18
  • 期:3
  • 页码:725-737
  • 全文大小:2,539 KB
  • 参考文献:1.Mode GT (2013) Konjunkturbersicht 2005-012. In: Technical Report, Gesamtverband Textil + Mode
    2.Kumar A (2008) Computer-vision-based fabric defect detection: a survey. IEEE Trans Ind Electr 55(1):348-63. doi:10.-109/?TIE.-930.-96476 View Article MATH
    3.Mahajan PM, Kolhe SR (2009) A review of automatic fabric defect detection techniques. Adv Comput Res 1(2):18-9
    4.Ngan HY, Pang GK, Yung NH (2011) Automated fabric defect detection: a review. Image Vis Comput 29(7):442-58View Article
    5.Yuvaraj D, Nayar RC (2012) A simple yarn hairiness measurement setup using image processing techniques. Indian J Fibre Text Res 37:331-36
    6.Fabijaska A, Jackowska-Strumio L (2012) Image processing and analysis algorithms for yarn hairiness determination. Mach Vis Appl 23(3):527-40. doi:10.-007/?s00138-012-0411-y View Article
    7.Guha A, Amarnath C, Pateria S, Mittal R (2010) Measurement of yarn hairiness by digital image processing. J Text Inst 101(3):214-22View Article
    8.Wang XH, Wang JY, Zhang JL, Liang HW, Kou PM (2010) Study on the detection of yarn hairiness morphology based on image processing technique. In: International conference on machine learning and cybernetics (ICMLC), vol 5, pp 2332-336
    9.Carvalho V, Soares F, Vasconcelos R, Belsley M, Goncalves N (2011) Yarn hairiness determination using image processing techniques. In: IEEE 16th conference on emerging technologies factory automation (ETFA), pp 1-
    10.Lin J-J (2002) Applying a co-occurrence matrix to automatic inspection of weaving density for woven fabrics. Text Res J 72(6):486-90View Article
    11.Jeong YJ, Jang J (2005) Applying image analysis to automatic inspection of fabric density for woven fabrics. Fibers Polym 6(2):156-61. doi:10.-007/?BF02875608 View Article
    12.Pan R, Gao F, Liu J, Wang H (2010) Automatic inspection of woven fabric density of solid colour fabric density by the hough transform. Fibres and Textiles in Eastern Europe 18 (4(81)):46-1
    13.Ravandi SH (1995) Fourier transform analysis of plain weave fabric appearance. Text Res J 65(11):676-83View Article
    14.Sari-Sarraf H, Goddard JS Jr (1996) Online optical measurement and monitoring of yarn density in woven fabrics. In: SPIE automated optical inspection for industry, pp 444-52. doi:10.-117/-2.-52995
    15.Setex (2008) Data sheet camcount, English. In: Technical Report, Setex Schermuly textile computer GmbH
    16.A. P. Inc. (2008) Apinc optical sensor brochure. In: Technical Report, Automation Partners Inc.
    17.Kang TJ, Kim CH, Oh KW (1999) Automatic recognition of fabric weave patterns by digital image analysis. Text Res J 69(2):77-3View Article
    18.Kuo CY, Shih CC, Lee JY (2004) Automatic recognition of fabric weave patterns by a fuzzy c-means clustering method. Text Res J 74(2):107-11View Article
    19.Huang C-C, Liu S-C, Yu W-H (2000) Woven fabric analysis by image processing: part I: identification of weave patterns. Text Res J 70(6):481-85View Article
    20.Kuo C-FJ, Shih C-Y, Ho C-E, Peng K-C (2010) Application of computer vision in the automatic identification and classification of woven fabric weave patterns. Text Res J 80(20):2144-157View Article
    21.Wang X, Georganas ND, Petriu E (2010) Automatic woven fabric structure identification by using principal component analysis and fuzzy clustering. In: Instrumentation and measurement technology conference (I2MTC), pp 590-95
    22.Ralló M, Escofet J, Millán MS (2003) Weave-repeat identification by structural analysis of fabric images. Appl Opt 42(17):3361-372View Article
    23.Lachkar A, Gadi T, Benslimane R, D’Orazio L, Martuscelli E (2003) Textile woven-fabric recognition by using fourier image-analysis techniques: part I: a fully automatic approach for crossed-points detection. J Text Inst 94(3-):194-01View Article MATH
    24.Lachkar A, Benslimane R, D’Orazio L, Martuscelli E (2005) Textile woven fabric recognition using fourier image analysis techniques: part II texture analysis for crossed-states detection. J Text Inst 96(3):179-83View Article
    25.Shen J, Zou X, Xu F, Xian Z (2010) Intelligent recognition of fabric weave patterns using texture orientation features. In: Zhu R, Zhang Y, Liu B, Liu C (eds) Information Computing and Applications, vol 106., Communications in Computer and Information ScienceSpringer, Berlin, pp 8-5View Article
    26.Yu X (2007) Micro structure information analysis of woven fabrics. PhD Thesis, Hong Kong Polytechnic University Department of Computing
    27.Heckbert P (ed) (1994) Graphic Gems IV. Academic Press Professional, San Diego
    28.Schneider D, van Ekeris T, Zur Jacobsmuehlen J, Gro? S (2013) On benchmarking non-blind deconvolution algorithms: a sample driven comparison of image de-blurring methods for automated visual inspection systems, in: Instrumentation and measurement technology conference (I2MTC), pp 1646-651. doi:10.-109/?I2MTC.-013.-555693
    29.Muja M, Lowe DG (2009) Fast approximate nearest neigh
  • 作者单位:Dorian Schneider (1)
    Dorit Merhof (1)

    1. Institute of Imaging and Computer Vision, RWTH Aachen University, Aachen, Germany
  • 刊物类别:Computer Science
  • 刊物主题:Pattern Recognition
  • 出版者:Springer London
  • ISSN:1433-755X
文摘
For the purpose of textile quality assurance, an algorithmic framework for fully automatic detection of weave patterns in woven fabrics is presented. The proposed method is able to handle fabrics of any rotation, material, and binding. Periodicity features within highly resolved fabric images are found and structured in a compact yarn matrix representation which allows to estimate the trajectories of single yarns. Fourier analysis, template matching, and fuzzy clustering are some of the key methods employed during the process. From the yarn matrix, the fabric’s weave and density can directly be derived. Since a multitude of factors may falsify the output, a feedback loop is integrated to iteratively find an optimal result. The framework works completely blind, i.e., without any a priori knowledge of the fabric. The evaluation has been conducted on an extensive image database of 140 real-world fabric images including cotton, polyester, viscose, and carbon materials of plain, twill, or satin weave. The system proved to be robust and versatile as a 97?% detection accuracy could be achieved. Source codes and image databases are provided.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700