Physical Alignments Between Plumage Carotenoid Spectra and Cone Sensitivities in Ultraviolet-Sensitive (UVS) Birds (Passerida: Passeriformes)
详细信息    查看全文
  • 作者:Robert Bleiweiss (1)
  • 关键词:Communication ; Color ; Opponent processing ; Perception ; Pigment ; Signaling ; Vision
  • 刊名:Evolutionary Biology
  • 出版年:2014
  • 出版时间:September 2014
  • 年:2014
  • 卷:41
  • 期:3
  • 页码:404-424
  • 全文大小:633 KB
  • 参考文献:1. Andersson, S., & Prager, M. (2006). Quantifying colors. In G. E. Hill & K. J. McGraw (Eds.), / Bird coloration (Vol. I, pp. 41-9). Cambridge: Harvard University Press.
    2. Armenta, J. K., Dunn, P. O., & Whittingham, L. A. (2008). Effects of specimen age on plumage color. / Auk, / 125, 803-08. CrossRef
    3. Beason, R. C., & Loew, E. R. (2008). Visual pigment and oil droplet characteristics of the bobolink ( / Dolichonyx oryzivorus), a New World migratory bird. / Vision Research, / 48, 1-. CrossRef
    4. Bennett, A. T. D., Cuthill, I. C., Partridge, J. C., & Lunau, K. (1997). Ultraviolet plumage colors predict mate preferences in starlings. / Proceedings of the National Academy of Sciences of the United States of America, / 94, 8618-621.
    5. Bleiweiss, R. (2004). Novel chromatic and structural biomarkers of diet in carotenoid-bearing plumage. / Proceedings of the Royal Society of London. Series B: Biological Sciences, / 271, 2327-335. CrossRef
    6. Bleiweiss, R. (2005). Variation in ultraviolet reflectance by carotenoid-bearing feathers of tanagers (Thraupini: Emberizinae: Passeriformes). / Biological Journal of the Linnean Society. / Linnean Society of London, / 84, 243-57. CrossRef
    7. Bleiweiss, R. (2007). On the ecological basis of interspecific homoplasy in carotenoid-bearing signals. / Evolution; International Journal of Organic Evolution, / 61, 2861-878. CrossRef
    8. Bleiweiss, R. (2008). Phenotypic integration expressed by carotenoid-bearing plumages of tanagers (Thraupini: Emberizinae) across the avian visual spectrum. / Biological Journal of the Linnean Society Linnean Society of London, / 93, 89-09. CrossRef
    9. Boughman, J. W. (2001). Divergent sexual selection enhances reproductive isolation in sticklebacks. / Nature, / 411, 944-48. CrossRef
    10. Brambilla, L., Canali, G., Mannucci, E., Massa, R., Saino, N., Stradi, R., et al. (1999). / Colori in volo. Il piumaggio degli ucelli ricerca scientifica e cultura umanistica. Università degli studi di milano Hoepli.
    11. Brush, A. H. (1990). Metabolism of carotenoid pigments in birds. / FASEB Journal, / 4, 2969-977.
    12. Butler, M. W., Toomey, M. B., & McGraw, K. J. (2011). How many color metrics do we need? Evaluating how different color-scoring procedures explain carotenoid pigment content in avian bare-part and plumage ornaments. / Behavioral Ecology and Sociobiology, / 65, 401-13. CrossRef
    13. Carleton, K. L. (2009). The diversity of cichlid vision. / Integrative and Comparative Biology, / 49, E27.
    14. Carleton, K. L., & Kocher, T. D. (2001). Cone opsin genes of African cichlid fishes: Tuning spectral sensitivity by differential gene expression. / Molecular Biology and Evolution, / 18, 1540-550. CrossRef
    15. Carleton, K. L., Parry, J. W. L., Bowmaker, J. K., Hunt, D. M., & Seehausen, O. (2005). Colour vision and speciation in Lake Victoria cichlids of the genus / Pundamilia. / Molecular Ecology, / 14, 4341-353. CrossRef
    16. Changizi, M. A., Zhang, Q., & Shimojo, S. (2006). Bare skin, blood and the evolution of primate colour vision. / Biology Letters, / 2, 217-21. CrossRef
    17. Church, S. C., Bennett, A. T. D., Cuthill, I. C., & Partridge, J. C. (1998). Ultraviolet cues affect the foraging behaviour of blue tits. / Proceedings of the Royal Society of London. Series B: Biological Sciences, / 265, 1509-514. CrossRef
    18. Cowing, J. A., Poopalasundaram, S., Wilkie, S. W., Bowmaker, J. K., & Hunt, D. M. (2002). Spectral tuning and evolution of short wave-sensitive cone pigments in cottoid fish from Lake Baikal. / Biochemistry, / 41, 6019-025. CrossRef
    19. Coyle, B. J., Hart, N. S., Carleton, K. L., & Borgia, G. (2012). Limited variation in visual sensitivity among bowerbird species suggests that there is no link between spectral tuning and variation in display colouration. / Journal of Experimental Biology, / 215, 1090-105. CrossRef
    20. Crescitelli, F., McFall-Ngai, M., & Horwitz, J. (1985). The visual pigment sensitivity hypothesis: Further evidence from fish of varying habitats. / Journal of Comparative Physiology A, Neuroethology, Sensory, Neural, and Behavioral Physiology, / 157, 323-33.
    21. Cuthill, I. C. (2006). Color Perception. In G. E. Hill & K. J. McGraw (Eds.), / Bird coloration (Vol. I, pp. 3-0). Cambridge, MA: Harvard University Press.
    22. Doucet, S. M., Mennill, D. J., & Hill, G. E. (2007). The evolution of signal design in manakin plumage ornaments. / American Naturalist, / 169, S62–S80. CrossRef
    23. Endler, J. A. (1992). Signals, signal conditions, and the direction of evolution. / American Naturalist, / 139, S125–S153. CrossRef
    24. Endler, J. A., & Basolo, A. L. (1998). Sensory ecology, receiver biases and sexual selection. / Trends in Ecology & Evolution, / 13, 415-20. CrossRef
    25. Finger, E., & Burkhardt, D. (1994). Biological aspects of bird colouration and avian colour vision including ultraviolet range. / Vision Research, / 34, 1509-514. CrossRef
    26. Frentiu, F. D., & Briscoe, A. D. (2008). A butterfly eye’s view of birds. / BioEssays, / 30, 1151-162. CrossRef
    27. Fuller, R. C., & Noa, L. A. (2010). Female mating preferences, lighting environment, and a test of the sensory bias hypothesis in the bluefin killifish. / Animal Behaviour, / 80, 23-5. CrossRef
    28. Goldsmith, T. H., & Butler, B. K. (2003). The roles of receptor noise and cone oil droplets on the photopic spectral sensitivity of the budgerigar. / Melopsittacus undulatus. / Journal of Comparative Physiology A, / 189, 135-42.
    29. Gomez, D., & Théry, M. (2007). Simultaneous crypsis and conspicuousness in color patterns: Comparative analysis of a neotropical rainforest bird community. / American Naturalist, / 169, 42-1. CrossRef
    30. Grether, G. (2000). Carotenoid limitation and mate preference in evolution: A test of the indicator hypothesis in guppies ( / Poecilia reticulata). / Evolution; International Journal of Organic Evolution, / 54, 1712-724. CrossRef
    31. Hart, N. S., & Hunt, D. M. (2007). Avian visual pigments: Characteristics, spectral tuning, and evolution. / American Naturalist, / 169, S7–S26. CrossRef
    32. Hart, N. S., & Vorobyev, M. D. (2005). Modelling bird spectral sensitivity from spectrophotometric data: A mathematical model of oil droplet spectral absorption. / Journal of Comparative Physiology A, Neuroethology, Sensory, Neural, and Behavioral Physiology, / 191, 381-92.
    33. Herrera, G., Zagal, J. C., Diaz, M., Fernández, J., Vielma, A., Cure, M., et al. (2008). Spectral sensitivities of photoreceptors and their role in colour discrimination in the green-backed firecrown hummingbird ( / Sephanoides sephanoides). / Journal of Comparative Physiology A, / 194, 785-94. CrossRef
    34. Hill, G. E. (1996). Redness as a measure of the production cost of ornamental coloration. / Ethology Ecology and Evolution, / 8, 157-75. CrossRef
    35. Hill, G. E. (2002). / A red bird in a brown bag. The function and evolution of colorful plumage in the house finch. Oxford: Oxford University Press. CrossRef
    36. Hofmann, C. M., McGraw, K. J., Cronin, T. W., & Omland, K. E. (2007). Melanin coloration in New World orioles I: Carotenoid masking and pigment dichromatism in the orchard oriole complex. / Journal of Avian Biology, / 38, 163-71. CrossRef
    37. Honkavaara, J., Koivula, M., Korpim?ki, E., Siitari, H., & Viitala, J. (2002). Ultraviolet vision and foraging in terrestrial vertebrates. / Oikos, / 98, 505-11. CrossRef
    38. H?rak, P., Ots, I., Vellau, H., Spottiswoode, C., & M?ller, A. P. (2001). Carotenoid-based plumage coloration reflects hemoparasite infection and local survival in breeding great tits. / Oecologia, / 126, 166-73. CrossRef
    39. Hudon, J. (1991). Unusual carotenoid use by the Western Tanager ( / Piranga ludoviciana) and its evolutionary implications. / Canadian Journal of Zoology, / 69, 2311-320. CrossRef
    40. Hudon, J., Storni, A., Pini, E., Anci?es, M., & Stradi, R. (2012). Rhodoxanthin as a characteristic keto-carotenoid of manakins (Pipridae). / Auk, / 129, 491-99. CrossRef
    41. Hurvich, L. M. (1981). / Color vision. Sunderland, MA: Sinauer Associates Inc.
    42. Kelber, A., & Osorio, D. (2010). From spectral information to animal colour vision: Experiments and concepts. / Proceedings of the Royal Society of London. Series B: Biological Sciences, / 277, 1617-625. CrossRef
    43. Levine, J. S., & MacNichol, E. F, Jr. (1979). Visual pigments in teleost fishes: Effects of habitat, microhabitat, and behavior on visual system evolution. / Sensory Processes, / 3, 95-31.
    44. Lipetz, L. E. (1984a). A new method for determining peak absorbance of dense pigment samples and its application to the cone oil droplets of / Emydoidea blandingii. / Vision Research, / 24, 597-04. CrossRef
    45. Lipetz, L. E. (1984b). Pigment types, densities and concentrations of cone oil droplets of / Emydoidea blandingii. / Vision Research, / 24, 605-12. CrossRef
    46. Lythgoe, J. N. (1979). / The ecology of vision. Oxford: Oxford University Press.
    47. Maan, M. E., & Seehausen, O. (2010). Mechanisms of species divergence through visual adaptation and sexual selection. / Current Zoology, / 56, 285-99.
    48. McGraw, K. J. (2006). Mechanics of carotenoid-based coloration. In G. E. Hill & K. J. McGraw (Eds.), / Bird coloration (Vol. I, pp. 177-42). Cambridge, MA: Harvard University Press.
    49. McGraw, K. J., & Schuetz, J. G. (2004). The evolution of carotenoid coloration in estrildid finches: A biochemical analysis. / Comparative Biochemistry and Physiology B, / 139, 45-1. CrossRef
    50. McNett, G. D., & Marchetti, K. (2005). Ultraviolet degradation in carotenoid patches: Live versus museum specimens of wood warblers (Parulidae). / Auk, / 122, 793-02. CrossRef
    51. Mollon, J. D., & Regan, B. C. (1999). The spectral distribution of primate cones and of the macular pigment: Matched to properties of the world? / Journal of Optical Technology, / 66, 847-52. CrossRef
    52. Mougeot, F., & Arroyo, B. E. (2006). Ultraviolet reflectance by the cere of raptors. / Biology Letters, / 2, 173-76. CrossRef
    53. Mullen, P., & Pohland, G. (2008). Studies on UV reflection in feathers of some 1000 bird species: Are UV peaks in feathers correlated with violet-sensitive and ultraviolet-sensitive cones? / Ibis, / 150, 59-8. CrossRef
    54. Nagel, M. G., & Osorio, D. (1993). The tuning of human photopigments may minimize red-green chromatic signals in natural conditions. / Proceedings of the Royal Society of London. Series B: Biological Sciences, / 252, 209-13. CrossRef
    55. Nakagawa, S. (2004). A farewell to Bonferroni: The problems of low statistical power and publication bias. / Behavioral Ecology, / 15, 1044-045. CrossRef
    56. ?deen, A., H?stad, O., & Alstr?m, P. (2011). Evolution of ultraviolet vision in the largest avian radiation—The passerines. / BMC Evolutionary Biology, / 11, 313. CrossRef
    57. ?deen, A., Pruett-Jones, S., Driskell, A. C., Armenta, J. K., & H?stad, O. (2012). Multiple shifts between violet and ultraviolet vision in a family of passerine birds with associated changes in plumage coloration. / Proceedings of the Royal Society of London. Series B: Biological Sciences, / 279, 1269-276. CrossRef
    58. Olson, V. A., & Owens, I. P. F. (1998). Costly sexual signals: Are carotenoids rare, risky or required? / Trends in Ecology & Evolution, / 13, 510-14. CrossRef
    59. Osorio, D., & Bossomaier, T. R. J. (1992). Human cone pigment spectral sensitivities and the reflectances of natural surfaces. / Biological Cybernetics, / 67, 217-22. CrossRef
    60. Osorio, D., Miklosi, A., & Gonda, Z. (1999a). Visual ecology and perception of coloration patterns by domestic chicks. / Evolutionary Ecology, / 13, 673-89. CrossRef
    61. Osorio, D., Vorobyev, M., & Jones, C. D. (1999b). Colour vision in domestic chicks. / Journal of Experimental Biology, / 202, 2951-959.
    62. Partali, V., Liaaen-Jensen, S., Slagsvold, T., & Lifjeld, J. T. (1987). Carotenoids in food chain studies—II. The food chain of / Parus spp. monitored by carotenoid analysis. / Comparative Biochemistry and Physiology, / 87B, 885-88.
    63. Partrige, J. C. (1989). The visual ecology of avian cone oil droplets. / Journal of Comparative Physiology, A, Neuroethology, Sensory, Neural, and Behavioral Physiology, / 165, 415-26.
    64. Regan, B. C., Julliot, C., Simmen, B., Viénot, F., Charles-Dominique, P., & Mollon, J. D. (2001). Fruits, foliage and the evolution of primate colour vision. / Philosophical Transactions of the Royal Society of London. Series B, Biological sciences, / 356, 229-83. CrossRef
    65. Renoult, J. P., Courtiol, A., & Kjellberg, F. (2009). When assumptions on visual system evolution matter: Nestling colouration and parental visual performance in birds. / Journal of Evolutionary Biology, / 23, 220-25. CrossRef
    66. Renoult, J. P., Courtiol, A., & Schaefer, H. M. (2013a). A novel framework to study colour signalling to multiple species. / Functional Ecology, / 27, 718-29. CrossRef
    67. Renoult, J. P., Valido, A., Jordano, P., & Martin Schaefer, H. (2013b). Adaptation of flower and fruit colours to multiple, distinct mutualists. / New Phytologist. doi:10.1111/nph.12539 .
    68. Rodriguez-Amaya, D. B. (2001). / A guide to carotenoid analysis in foods. Washington, DC: International Life Sciences Institute Press.
    69. Sabbah, S., Laria, R. L., Gray, S. M., & Hawryshyn, C. W. (2010). Functional diversity in the color vision of cichlid fishes. / BMC Biology, / 8, 133. CrossRef
    70. Saks, L., McGraw, K. J., & H?rak, P. (2003). How feather colour reflects its carotenoid content. / Functional Ecology, / 17, 555-61. CrossRef
    71. SAS Institute Inc. (2013). / SAS users guide, Version 9.1. Cary, NC: On Line Documentation.
    72. Schaefer, H. M., Schaefer, V., & Vorobyev, M. (2007). Are fruit colors adapted to consumer vision and birds equally efficient in detecting colorful signals? / American Naturalist, / 169, S159–S169. CrossRef
    73. Shi, Y., & Yokoyama, S. (2003). Molecular analysis of the evolutionary significance of ultraviolet vision in vertebrates. / Proceedings of the National Academy of Sciences of the United States of America, / 100, 8308-313.
    74. Slagsvold, T., & Lifjeld, J. T. (1985). Variation in plumage color of the great tit / Parus major in relation to habitat, season and food. / Journal of Zoology, London (A), / 206, 321-28. CrossRef
    75. Stradi, R., Rossi, E., Rovati, G., & Pastore, M. (1995). Carotenoids in bird plumage—I. The carotenoid pattern in a series of Palearctic Carduelinae. / Comparative Biochemistry and Physiology, / 110, 131-43. CrossRef
    76. Sumner, P., & Mollon, J. D. (2000). Catarrhine photopigments are optimized for detecting targets against a foliage background. / The Journal of Experimental Biology, / 203, 1963-986.
    77. Vorobyev, M., Osorio, D., Bennett, A. T. D., Marshall, N. J., & Cuthill, I. C. (1998). Tetrachromacy, oil droplets and bird plumage colors. / Journal of Comparative Physiology A, Neuroethology, Sensory, Neural, and Behavioral Physiology, / 183, 621-33.
    78. Yuan, F. R., Bernard, G. D., Le, J., & Briscoe, A. D. (2010). Contrasting modes of evolution of the visual pigments in heliconius butterflies. / Molecular Biology and Evolution, / 27, 2392-405. CrossRef
  • 作者单位:Robert Bleiweiss (1)

    1. Department of Zoology and the Zoological Museum, University of Wisconsin, Birge Hall, 430 Lincoln Drive, Madison, WI, 53706, USA
  • ISSN:1934-2845
文摘
Among birds, single cone sensitivities responsible for color vision appear surprisingly conserved even though chromatic signals vary greatly. Thus it is widely held that avian visual signal and receptor characteristics are rarely aligned. Analysis of a diverse passerine clade (Passerida) with characteristically ultraviolet-sensitive (UVS) vision revealed that plumage carotenoid reflectance spectra matched cone maximal sensitivities at several levels: (1) plumage carotenoid reflectance minima and maxima in aggregate aligned with the four UVS single cones; (2) the corresponding reflectance features of yellow (hydroxy- and ε-keto) and red (3- and 4-β-keto) carotenoid classes aligned with different combinations of cones; (3) pairs of reflectance features (e.g. one minimum and one maximum) of each carotenoid class aligned with pairs of (opponent) cones that evoke chromatic perception; (4) passerid plumage carotenoids aligned more closely to their own (UVS) visual system than to the distinctive homologous cone classes of the violet-sensitive system found in other birds. The ubiquitous occurrence of plumage carotenoids ipso facto demonstrates that alignments of avian visual signals and receptors are widespread, and provides novel evidence that carotenoids are important to avian communication. Moreover, alignment of different physical spectra to different cone combinations in a fixed receptor array provides a straightforward mechanism that accommodates signal diversity within the context of a relatively conserved visual system. The distinct patterns of variation and alignment observed for yellow versus red carotenoids further suggest that these pigment classes convey different physical aspects of content, which may foster carotenoid-based plumage diversity through signal design trade-offs.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700