Extrinsic Versus Intrinsic Control of Avian Communication Based on Colorful Plumage Porphyrins
详细信息    查看全文
  • 作者:Robert Bleiweiss
  • 关键词:Bird ; Evolution ; Opponent processing ; Pigment ; Signal ; Turacoverdin ; Turacin
  • 刊名:Evolutionary Biology
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:42
  • 期:4
  • 页码:483-501
  • 全文大小:954 KB
  • 参考文献:Aidala, Z., Huynen, L., Brennan, P. L. R., Musser, J., Fidler, A., Chong, N., et al. (2012). Ultraviolet visual sensitivity in three avian lineages: Paleognaths, parrots and passerines. Journal of Comparative Physiology A, 198, 495-10.CrossRef
    Andersson, S., & Prager, M. (2006). Quantifying colors. In G. E. Hill & K. J. McGraw (Eds.), Bird coloration (Vol. I, pp. 41-9). Cambridge: Harvard University Press.
    Armenta, J. K., Dunn, P. O., & Whittingham, L. A. (2006). Effects of specimen age on plumage color. Auk, 125, 803-08.CrossRef
    Auld, J. R., Agrawal, A. A., & Relyea, R. A. (2010). Re-evaluating the cost and limits of adaptive phenotypic plasticity. Proceedings of the Royal Society of London. Series B, 277, 503-11.PubMedCentral CrossRef PubMed
    Baker, A. J., Pereira, S. L., & Paton, T. A. (2007). Phylogenetic relationships and divergence times of Charadriiformes genera: Multigene evidence for the Cretaceous origin of at least 14 clades of shorebirds. Biology Letters, 3, 205-09.PubMedCentral CrossRef PubMed
    Beason, R. C., & Loew, E. R. (2008). Visual pigment and oil droplet characteristics of the bobolink (Dolichonyx oryzivorus), a New World migratory bird. Vision Research, 48, 1-.CrossRef PubMed
    Bleiweiss, R. (2005). Variation in ultraviolet reflectance by carotenoid-bearing feathers of tanagers (Thraupini: Emberizinae: Passeriformes). Biological Journal of the Linnean Society. Linnean Society of London, 84, 243-57.CrossRef
    Bleiweiss, R. (2007). On the ecological basis of interspecific homoplasy in carotenoid-bearing signals. Evolution; International Journal of Organic Evolution, 61, 2861-878.CrossRef PubMed
    Bleiweiss, R. (2008). Phenotypic integration expressed by carotenoid-bearing plumages of tanagers (Thraupini: Emberizinae) across the avian visual spectrum. Biological Journal of the Linnean Society. Linnean Society of London, 93, 89-09.CrossRef
    Bleiweiss, R. (2014). Physical alignments between plumage carotenoid spectra and cone sensitivities in ultraviolet-sensitive (UVS) birds (Passerida: Passeriformes). Evolutionary Biology, 41, 404-24.CrossRef
    Boughman, J. W. (2001). Divergent sexual selection enhances reproductive isolation in sticklebacks. Nature, 411, 944-48.CrossRef PubMed
    Bowmaker, J. K. (2008). Evolution of vertebrate visual pigments. Vision Research, 48, 2022-041.CrossRef PubMed
    Bowmaker, J. K., Wilkie, S. W., & Hunt, D. M. (1997). Visual pigments and oil droplets from six classes of photoreceptors in the retinas of birds. Vision Research, 37, 2183-194.CrossRef PubMed
    Briscoe, A. D. (2008). Reconstructing the ancestral butterfly eye: Focus on the opsins. Journal of Experimental Biology, 211, 1805-813.CrossRef PubMed
    Brush, A. H. (1990). Metabolism of carotenoid pigments in birds. The FASEB Journal, 4, 2969-977.PubMed
    Butler, M. W., Toomey, M. B., & McGraw, K. J. (2011). How many color metrics do we need? Evaluating how different color-scoring procedures explain carotenoid pigment content in avian bare-part and plumage ornaments. Behavioral Ecology and Sociobiology, 65, 401-13.CrossRef
    Capuska, G. E. M., Huynen, L., Lambert, D., & Raubenheimer, D. (2011). UVS is rare in seabirds. Vision Research, 51, 1333-337.CrossRef
    Carleton, K. L. (2009). Cichlid fish visual systems: Mechanisms of spectral tuning. Integrative Zoology, 4, 75-6.CrossRef PubMed
    Carleton, K. L., Parry, J. W. L., Bowmaker, J. K., Hunt, D. M., & Seehausen, O. (2005). Color vision and speciation in Lake Victoria cichlids of the genus Pundamilia. Molecular Ecology, 14, 4341-353.CrossRef PubMed
    Carvalho, L. S., Cowing, J. A., Wilkie, S. E., Bowmaker, J. K., & Hunt, D. M. (2007). The molecular evolution of avian ultraviolet- and violet-sensitive visual pigments. Molecular Biology and Evolution, 24, 1843-852.CrossRef PubMed
    Chavez, J., Kelber, A., Vorobyev, M., & Lind, O. (2014). Unexpectedly low UV-sensitivity in a bird, the budgerigar. Biology Letters, 10, 1-.CrossRef
    Chiao, C.-C., Vorobyev, M., Cronin, T. W., & Osorio, D. (2000). Spectral tuning of dichromats to natural scenes. Vision Research, 40, 3257-271.CrossRef PubMed
    Church, A. H. (1870). Researches on Turacin, an animal pigment containing copper. Proceedings of the Royal Society Philosophical Transactions Series A., 159, 627-36.
    Church, A. H. (1892). Researches on Turacin, an animal pigment containing copper. Proceedings of the Royal Society Philosophical Transactions Series A., 183, 511-30.CrossRef
    Church, A. H. (1913). Notes on turacin and turacin-bearers. Proceedings of the Zoological Society, 1913, 639-43.
    Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale: Lawrence Erlbaum.
    Coyle, B. J., Hart, N. S., Carleton, K. L., & Borgia, G. (2012). Limited variation in visual sensitivity among bowerbird species suggests that there is no link between spectral tuning and variation in display colouration. Journal of Ex
  • 作者单位:Robert Bleiweiss (1)

    1. Department of Zoology and the Zoological Museum, University of Wisconsin, Birge Hall, 430 Lincoln Drive, Madison, WI, 53706, USA
  • 刊物主题:Evolutionary Biology; Ecology; Developmental Biology; Human Genetics; Animal Genetics and Genomics;
  • 出版者:Springer US
  • ISSN:1934-2845
文摘
Studies of avian visual communication are often approached from the perspective of adaptation-based hypotheses couched in an ecological framework. Despite their exceptional ecological diversity, however, birds express relatively few pigment categories in their visual signals or receptors. The mismatch between ecologic and pigment diversity suggests the operation of non-ecological constraints on avian visual communication. Colorful plumage porphyrins (turacoverdin and turacin) were examined to determine if both signal and receptor pigment absorption patterns co-vary with ecology, if only plumage pigment absorption varies with ecology, or if plumage and receptor pigment absorption are tied to each other’s physicochemical, physiological, and phylogenetic characteristics rather than to ecology. Physicochemical constraints on signal form were suggested by the persistence of the plumage pigments-diagnostic spectral structure across lineages despite dramatic ecological differences. Physiological constraints on communication were suggested by the occurrence of colorful porphyrins only in birds with violet-sensitive (VS) vision, whose receptor sensitivities aligned to colorful porphyrin spectral structure much more strongly than did receptors of alternative visual systems. Phylogenetic constraints on these associations were evidenced by restriction of colorful plumage porphyrins to just a few lineages, all non-passerines (galliforms, musophagiforms, and charadriiforms). Synthesis of these patterns indicated that VS visual systems always evolved prior to colorful plumage porphyrins, suggesting a sensory bias for plumage pigments based on signal-receptor alignment. Patterns for colorful porphyrins and violet-sensitive systems reinforce the functional coupling between signal and receptor pigments observed for carotenoid plumage pigments in ultraviolet-sensitive birds, but the pairings differ in details of their alignments. Keywords Bird Evolution Opponent processing Pigment Signal Turacoverdin Turacin

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700