Inhibition in dot comparison tasks
详细信息    查看全文
  • 作者:Sarah Clayton ; Camilla Gilmore
  • 关键词:Inhibition ; Approximate Number System ; Numerical cognition ; Dot comparison ; Visual cues
  • 刊名:ZDM
  • 出版年:2015
  • 出版时间:September 2015
  • 年:2015
  • 卷:47
  • 期:5
  • 页码:759-770
  • 全文大小:633 KB
  • 参考文献:Banks, J., & Oldfield, Z. (2007). Understanding pensions: Cognitive function, numerical ability and retirement saving. Fiscal Studies, 28(2), 143-70.
    Barbaresi, W. J., Katusic, S. K., Colligan, R. C., Weaver, A. L., & Jacobsen, S. J. (2005). Math learning disorder: Incidence in a population-based birth cohort, 1976-2, Rochester, Minn. Ambulatory Pediatrics, 5(5), 281-89.
    Baroody, A. J. (2003). The development of adaptive expertise and flexibility: The integration of conceptual and procedural knowledge. In A. J. Baroody & A. Dowker (Eds.), The development of arithmetic concepts and skills: Constructing adaptive expertise studies (pp. 1-3). Mahwah: Lawrence Erlbaum Associates Inc.
    Barth, H., Beckmann, L., & Spelke, E. S. (2008). Nonsymbolic, approximate arithmetic in children: Abstract addition prior to instruction. Developmental Psychology, 44(5), 1466-477.
    Barth, H., Kanwisher, N., & Spelke, E. S. (2002). The construction of large number representations in adults. Cognition, 86, 201-21.
    Barth, H., La Mont, K., Lipton, J., Dehaene, S., Kanwisher, N., & Spelke, E. (2006). Nonsymbolic arithmetic in adults and young children. Cognition, 98, 199-22.
    Barth, H., La Mont, K., Lipton, J., & Spelke, E. S. (2005). Abstract number and arithmetic in preschool children. Proceedings of the National Academy of Sciences of the United States of America, 102, 14116-4121.
    Blair, C., & Razza, R. P. (2007). Relating effortful control, executive function, and false belief understanding to emerging math and literacy ability in kindergarten. Child Development, 78(2), 647-63.
    Bull, R., Espy, K. A., & Wiebe, S. A. (2008). Short-term memory, working memory, and executive functioning in preschoolers: Longitudinal predictors of mathematical achievement at age 7 years. Developmental Neuropsychology, 33(3), 205-28.
    Bull, R., & Scerif, G. (2001). Executive functioning as a predictor of children’s mathematics ability: Inhibition, switching and working memory. Developmental Neuropsychology, 19(3), 273-93.
    Cappelletti, M., Didino, D., Stoianov, I., & Zorzi, M. (2014). Number skills are maintained in healthy ageing. Cognitive Psychology, 69, 25-5.
    Chen, Q., & Li, J. (2014). Association between individual differences in non-symbolic number acuity and math performance: A meta-analysis. Acta Psychologica, 148, 163-72.
    De Smedt, B., No?l, M.-P., Gilmore, C., & Ansari, D. (2013). How do symbolic and non-symbolic numerical magnitude processing skills relate to individual differences in children’s mathematical skills? A review of evidence from brain and behavior. Trends in Neuroscience and Education, 2, 48-5.
    Dehaene, S. (1997). The number sense. Oxford: Oxford University Press.
    Dempster, F. N. (1992). The rise and fall of the inhibitory mechanism: Toward a unified theory of cognitive development and aging. Developmental Review, 12(1), 45-5.
    DeWind, N. K., & Brannon, E. M. (2012). Malleability of the approximate number system: Effects of feedback and training. Frontiers in Human Neuroscience, 6(68), 1-0.
    Emmerton, J. (1998). Numerosity differences and effects of stimulus density on pigeons-discrimination performance. Animal Learning & Behavior, 26(3), 243-56.
    Espy, K. A., McDiarmid, M. M., Cwik, M. F., Stalets, M. M., Hamby, A., & Senn, T. E. (2004). The contribution of executive functions to emergent mathematic skills in preschool children. Developmental Neuropsychology, 26(1), 465-86.
    Feigenson, L., Libertus, M. E., & Halberda, J. (2013). Links Between the Intuitive Sense of Number and Formal Mathematics Ability. Child Development Perspectives, 7(2), 74-9.
    Friso-van den Bos, I., van der Ven, S. H. G., Kroesbergen, E. H., & van Luit, J. E. H. (2013). Working memory and mathematics in primary school children: A meta-analysis. Educational Research Review, 10, 29-4.
    Fuhs, M. W., & McNeil, N. M. (2013). ANS acuity and mathematics ability in preschoolers from low-income homes: contributions of inhibitory control. Developmental Science, 16, 136-48.
    Gebuis, T., & Gevers, W. (2011). Numerosities and space; indeed a cognitive illusion! A reply to de Hevia and Spelke (2009). Cognition, 121(2), 248-52.
    Gebuis, T., Kadosh, R. C., de Haan, E., & Henik, A. (2009). Automatic quantity processing in 5-year olds and adults. Cognitive Processing, 10(2), 133-42.
    Gebuis, T., & Reynvoet, B. (2011). Generating nonsymbolic number stimuli. Behavior Research Methods, 43, 981-86.
    Gebuis, T., & Reynvoet, B. (2012a). The interplay between nonsymbolic number and its continuous visual properties. Journal of Experimental Psychology: General, 141(4), 642-48.
    Gebuis, T., & Reynvoet, B. (2012b). The role of visual information in numerosity estimation. PLoS ONE, 7(5), e37426.
    Gebuis, T., & van der Smagt, M. J. (2011). False approximations of the approximate number system. PLoS ONE, 6(10), e25405.
    Gerardi, K., Goette, L., & Meier, S. (2013). Numerical ability predicts mortgage def
  • 作者单位:Sarah Clayton (1)
    Camilla Gilmore (1)

    1. Mathematics Education Centre, Loughborough University, Loughborough, LE11 3TU, UK
  • 刊物主题:Mathematics Education; Mathematics, general;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1863-9704
文摘
Dot comparison tasks are commonly used to index an individual’s Approximate Number System (ANS) acuity, but the cognitive processes involved in completing these tasks are poorly understood. Here, we investigated how factors including numerosity ratio, set size and visual cues influence task performance. Forty-four children aged 7- years completed a dot comparison task with a range of to-be-compared numerosities. We found that as the size of the numerosities increased, with ratios held constant, accuracy decreased due to the heightened salience of incongruent visual information. Furthermore, in trials with larger numerosities participants-accuracies were influenced more by the convex hull of the array than the average dot size. The numerosity ratio between the arrays in each trial was an important predictor for all set sizes. We argue that these findings are consistent with a ‘competing processes-inhibition-based account, where accuracy scores are influenced by individual differences in both ANS acuity and inhibitory control skills. Keywords Inhibition Approximate Number System Numerical cognition Dot comparison Visual cues

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700