Online and post-trial feedback differentially affect implicit adaptation to a visuomotor rotation
详细信息    查看全文
  • 作者:Raphael Schween (1)
    Wolfgang Taube (2)
    Albert Gollhofer (1)
    Christian Leukel (2)
  • 关键词:Visual feedback ; Visuomotor rotation ; Adaptation ; Model based ; Model free
  • 刊名:Experimental Brain Research
  • 出版年:2014
  • 出版时间:September 2014
  • 年:2014
  • 卷:232
  • 期:9
  • 页码:3007-3013
  • 全文大小:547 KB
  • 参考文献:1. Bernier P-M, Chua R, Franks IM (2005) Is proprioception calibrated during visually guided movements? Exp Brain Res 167:292-96. doi:10.1007/s00221-005-0063-5
    2. Carrillo RR, Ros E, Boucheny C, Coenen OJ-MD (2008) A real-time spiking cerebellum model for learning robot control. Biosystems 94:18-7. doi:10.1016/j.biosystems.2008.05.008
    3. Galea JM, Vazquez A, Pasricha N et al (2011) Dissociating the roles of the cerebellum and motor cortex during adaptive learning: the motor cortex retains what the cerebellum learns. Cereb Cortex 21:1761-770. doi:10.1093/cercor/bhq246
    4. Haith AM, Krakauer JW (2013) Model-based and model-free mechanisms of human motor learning. Adv Exp Med Biol 782:1-1. doi:10.1007/978-1-4614-5465-6
    5. Hinder MR, Tresilian JR, Riek S, Carson RG (2008) The contribution of visual feedback to visuomotor adaptation—how much and when? Brain Res 1197:123-34. doi:10.1016/j.brainres.2007.12.067
    6. Hinder MR, Riek S, Tresilian JR et al (2010) Real-time error detection but not error correction drives automatic visuomotor adaptation. Exp Brain Res 201:191-07. doi:10.1007/s00221-009-2025-9
    7. Honda T, Hirashima M, Nozaki D (2012a) Adaptation to visual feedback delay influences visuomotor learning. PLoS one 7:e37900. doi:10.1371/journal.pone.0037900
    8. Honda T, Hirashima M, Nozaki D (2012b) Habituation to feedback delay restores degraded visuomotor adaptation by altering both sensory prediction error and the sensitivity of adaptation to the error. Front Psychol 3:540. doi:10.3389/fpsyg.2012.00540
    9. Huang VS, Haith AM, Mazzoni P, Krakauer JW (2011) Rethinking motor learning and savings in adaptation paradigms: model-free memory for successful actions combines with internal models. Neuron 70:787-01
    10. Kitazawa S, Kohno T, Uka T (1995) Effects of delayed visual information on the rate and amount of prism adaptation in the human. J Neurosci 15:7644-652
    11. Krakauer JW, Pine MZ et al (2000) Learning of visuomotor transformations for vectorial planning of reaching trajectories. J Neurosci 20:8916-924
    12. Mazzoni P, Krakauer JW (2006) An implicit plan overrides an explicit strategy during visuomotor adaptation. J Neurosci 26:3642-645
    13. Miall RC, Christensen LOD, Cain O, Stanley J (2007) Disruption of state estimation in the human lateral cerebellum. PLoS Biol 5:e316. doi:10.1371/journal.pbio.0050316
    14. Ohyama T, Nores WL, Murphy M, Mauk MD (2003) What the cerebellum computes. Trends Neurosci 26:222-27. doi:10.1016/S0166-2236(03)00054-7
    15. Peled A, Karniel A (2012) Knowledge of performance is insufficient for implicit visuomotor rotation adaptation abstract. J Mot Behav 44:185-94. doi:10.1080/00222895.2012.672349
    16. Shabbott BA, Sainburg RL (2010) Learning a visuomotor rotation—simultaneous visual and proprioceptive information is crucial for visuomotor remapping. Exp Brain Res 203:75-7. doi:10.1007/s00221-010-2209-3
    17. Shmuelof L, Huang VS, Haith AM et al (2012) Overcoming motor “forgetting-through reinforcement of learned actions. J Neurosci 32:14617-4621. doi:10.1523/JNEUROSCI.2184-12.2012
    18. Smith MA, Shadmehr R (2005) Intact ability to learn internal models of arm dynamics in Huntington’s disease but not cerebellar degeneration. J Neurophysiol 93:2809-821. doi:10.1152/jn.00943.2004
    19. Taylor JA, Ivry RB (2011) Flexible cognitive strategies during motor learning. PLoS Comput Biol 7:e1001096. doi:10.1371/journal.pcbi.1001096
    20. Taylor JA, Ivry RB (2012) The role of strategies in motor learning. Ann N Y Acad Sci 1251:1-2. doi:10.1111/j.1749-6632.2011.06430.x
    21. Taylor JA, Klemfuss NM, Ivry RB (2010) An explicit strategy prevails when the cerebellum fails to compute movement errors. Cerebellum 9:580-86
    22. Taylor JA, Krakauer JW, Ivry RB (2014) Explicit and implicit contributions to learning in a sensorimotor adaptation task. J Neurosci 34:3023-032. doi:10.1523/JNEUROSCI.3619-13.2014
    23. Tseng Y, Diedrichsen J, Krakauer JW et al (2007) Sensory prediction errors drive cerebellum-dependent adaptation of reaching. J Neurophysiol 98:54-2. doi:10.1152/jn.00266.2007
    24. Wolpert DM, Diedrichsen J, Flanagan JR (2011) Principles of sensorimotor learning. Nat Rev Neurosci Adv 739-1. doi: 10.1038/nrn3112
    25. Zhu F, Poolton J, Masters R (2012) Neuroscientific aspects of implicit motor learning in sport. In: Gollhofer A, Taube W, Nielsen JB (eds) Routledge handbook of motor control and motor learning. Routledge, London, pp 155-74
  • 作者单位:Raphael Schween (1)
    Wolfgang Taube (2)
    Albert Gollhofer (1)
    Christian Leukel (2)

    1. Department of Sport Science, University of Freiburg, Schwarzwaldstr. 175, 79117, Freiburg, Germany
    2. Department of Medicine, Movement and Sport Science, University of Fribourg, Fribourg, Switzerland
  • ISSN:1432-1106
文摘
Multiple motor learning processes can be discriminated in visuomotor rotation paradigms. At least four processes have been proposed: Implicit adaptation updates an internal model based on prediction errors. Model-free reinforcement reinforces actions that achieve task success. Use-dependent learning favors repetition of prior movements, and strategic learning uses explicit knowledge about the task. The current experiment tested whether the processes involved in motor learning differ when visual feedback is altered. Specifically, we hypothesized that online and post-trial feedback would cause different amounts of implicit adaptation. Twenty subjects performed drawing movements to targets under a 45° counterclockwise visuomotor rotation while aiming at a clockwise adjacent target. Subjects received visual feedback via a cursor on a screen. One group saw the cursor throughout the movement (online feedback), while the other only saw the final position after movement execution (post-trial feedback). Both groups initially hit the target by applying the strategy. After 80 trials, subjects with online feedback had drifted in clockwise direction [mean direction error: 15.1° (SD 11.2°)], thus overcompensating the rotation. Subjects with post-trial feedback remained accurate [mean: 0.7° (SD 2.0°), TIME?×?GROUP: F?=?3.926, p?=?0.003]. We interpret this overcompensation to reflect implicit adaptation isolated from other mechanisms, because it is driven by prediction error rather than task success (model-free reinforcement) or repetition (use-dependent learning). The current findings extend previous work (e.g., Mazzoni and Krakauer in J Neurosci 26:3642-645, 2006; Hinder et al. in Exp Brain Res 201:191-07, 2010) and suggest that online feedback promotes more implicit adaptation than does post-trial feedback.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700