A deep survey of alternative splicing in grape reveals changes in the splicing machinery related to tissue, stress condition and genotype
详细信息    查看全文
  • 作者:Nicola Vitulo (1)
    Claudio Forcato (1)
    Elisa Corteggiani Carpinelli (1)
    Andrea Telatin (1)
    Davide Campagna (4)
    Michela D鈥橝ngelo (1)
    Rosanna Zimbello (1)
    Massimiliano Corso (2)
    Alessandro Vannozzi (2)
    Claudio Bonghi (2)
    Margherita Lucchin (2) (3)
    Giorgio Valle (1) (4)

    1. CRIBI Biotechnology Centre
    ; University of Padua ; Padua ; Italy
    4. Department of Biology
    ; University of Padua ; Padua ; Italy
    2. Department of Agronomy
    ; Food ; Natural resources ; Animals and Environment ; DAFNAE ; University of Padua ; Padua ; Italy
    3. CIRVE
    ; Centre for Research in Viticulture and Enology ; University of Padua ; Padua ; Italy
  • 关键词:Alternative splicing ; Transcriptome ; RNAseq ; Grapevine
  • 刊名:BMC Plant Biology
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:14
  • 期:1
  • 全文大小:952 KB
  • 参考文献:1. Jaillon, O, Aury, J-M, Noel, B, Policriti, A, Clepet, C, Casagrande, A, Choisne, N, Aubourg, S, Vitulo, N, Jubin, C, Vezzi, A, Legeai, F, Hugueney, P, Dasilva, C, Horner, D, Mica, E, Jublot, D, Poulain, J, Bruy猫re, C, Billault, A, Segurens, B, Gouyvenoux, M, Ugarte, E, Cattonaro, F, Anthouard, V, Vico, V, Del Fabbro, C, Alaux, M, Di Gaspero, G, Dumas, V (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449: pp. 463-467 CrossRef
    2. Velasco, R, Zharkikh, A, Troggio, M, Cartwright, DA, Cestaro, A, Pruss, D, Pindo, M, Fitzgerald, LM, Vezzulli, S, Reid, J, Malacarne, G, Iliev, D, Coppola, G, Wardell, B, Micheletti, D, Macalma, T, Facci, M, Mitchell, JT, Perazzolli, M, Eldredge, G, Gatto, P, Oyzerski, R, Moretto, M, Gutin, N, Stefanini, M, Chen, Y, Segala, C, Davenport, C, Dematt猫, L, Mraz, A (2007) A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS One 2: pp. e1326 CrossRef
    3. Fasoli, M, Dal Santo, S, Zenoni, S, Tornielli, GB, Farina, L, Zamboni, A, Porceddu, A, Venturini, L, Bicego, M, Murino, V, Ferrarini, A, Delledonne, M, Pezzotti, M (2012) The grapevine expression atlas reveals a deep transcriptome shift driving the entire plant into a maturation program. Plant Cell 24: pp. 3489-3505 CrossRef
    4. Venturini, L, Ferrarini, A, Zenoni, S, Tornielli, GB, Fasoli, M, Santo, SD, Minio, A, Buson, G, Tononi, P, Zago, ED, Zamperin, G, Bellin, D, Pezzotti, M, Delledonne, M (2013) De novo transcriptome characterization of Vitis vinifera cv. Corvina unveils varietal diversity. BMC Genomics 14: pp. 41 CrossRef
    5. Zenoni, S, Ferrarini, A, Giacomelli, E, Xumerle, L, Fasoli, M, Malerba, G, Bellin, D, Pezzotti, M, Delledonne, M (2010) Characterization of transcriptional complexity during berry development in Vitis vinifera using RNA-seq. Plant Physiol 152: pp. 1787-1795 CrossRef
    6. Sweetman, C, Wong, DC, Ford, CM, Drew, DP (2012) Transcriptome analysis at four developmental stages of grape berry (Vitis vinifera cv. Shiraz) provides insights into regulated and coordinated gene expression. BMC Genomics 13: pp. 691 CrossRef
    7. Santo, SD, Tornielli, GB, Zenoni, S, Fasoli, M, Farina, L, Anesi, A, Guzzo, F, Delledonne, M, Pezzotti, M (2013) The plasticity of the grapevine berry transcriptome. Genome Biol 14: pp. r54 CrossRef
    8. Fernie, AR, Tohge, T (2013) Plastic, fantastic! Phenotypic variance in the transcriptional landscape of the grape berry. Genome Biol 14: pp. 1-3 CrossRef
    9. Perrone, I, Pagliarani, C, Lovisolo, C, Chitarra, W, Roman, F, Schubert, A (2012) Recovery from water stress affects grape leaf petiole transcriptome. Planta 235: pp. 1383-1396 CrossRef
    10. Vannozzi, A, Dry, IB, Fasoli, M, Zenoni, S, Lucchin, M (2012) Genome-wide analysis of the grapevine stilbene synthase multigenic family: genomic organization and expression profiles upon biotic and abiotic stresses. BMC Plant Biol 12: pp. 130 CrossRef
    11. Filichkin, SA, Priest, HD, Givan, SA, Shen, R, Bryant, DW, Fox, SE, Wong, W-K, Mockler, TC (2010) Genome-wide mapping of alternative splicing in Arabidopsis thaliana. Genome Res 20: pp. 45-58 CrossRef
    12. Marquez, Y, Brown, JWS, Simpson, C, Barta, A, Kalyna, M (2012) Transcriptome survey reveals increased complexity of the alternative splicing landscape in Arabidopsis. Genome Res 22: pp. 1184-1195 CrossRef
    13. Liu, J, Jung, C, Xu, J, Wang, H, Deng, S, Bernad, L, Arenas-Huertero, C, Chua, N-H (2012) Genome-wide analysis uncovers regulation of long intergenic noncoding RNAs in Arabidopsis. Plant Cell 24: pp. 4333-4345 CrossRef
    14. Xin, M, Wang, Y, Yao, Y, Song, N, Hu, Z, Qin, D, Xie, C, Peng, H, Ni, Z, Sun, Q (2011) Identification and characterization of wheat long non-protein coding RNAs responsive to powdery mildew infection and heat stress by using microarray analysis and SBS sequencing. BMC Plant Biol 11: pp. 61 CrossRef
    15. Wang, B-B, Brendel, V (2006) Genomewide comparative analysis of alternative splicing in plants. Proc Natl Acad Sci 103: pp. 7175-7180 CrossRef
    16. Campbell, MA, Haas, BJ, Hamilton, JP, Mount, SM, Buell, CR (2006) Comprehensive analysis of alternative splicing in rice and comparative analyses with Arabidopsis. BMC Genomics 7: pp. 327 CrossRef
    17. Reddy, ASN, Marquez, Y, Kalyna, M, Barta, A (2013) Complexity of the alternative splicing landscape in plants. Plant Cell Online 25: pp. 3657-3683 CrossRef
    18. Barbazuk, WB, Fu, Y, McGinnis, KM (2008) Genome-wide analyses of alternative splicing in plants: opportunities and challenges. Genome Res 18: pp. 1381-1392 CrossRef
    19. Ner-Gaon, H, Leviatan, N, Rubin, E, Fluhr, R (2007) Comparative cross-species alternative splicing in plants. Plant Physiol 144: pp. 1632-1641 CrossRef
    20. Djebali, S, Davis, CA, Merkel, A, Dobin, A, Lassmann, T, Mortazavi, A, Tanzer, A, Lagarde, J, Lin, W, Schlesinger, F, Xue, C, Marinov, GK, Khatun, J, Williams, BA, Zaleski, C, Rozowsky, J, R枚der, M, Kokocinski, F, Abdelhamid, RF, Alioto, T, Antoshechkin, I, Baer, MT, Bar, NS, Batut, P, Bell, K, Bell, I, Chakrabortty, S, Chen, X, Chrast, J, Curado, J (2012) Landscape of transcription in human cells. Nature 489: pp. 101-108 CrossRef
    21. Gonzalez-Porta, M, Frankish, A, Rung, J, Harrow, J, Brazma, A (2013) Transcriptome analysis of human tissues and cell lines reveals one dominant transcript per gene. Genome Biol 14: pp. R70 CrossRef
    22. Carninci, P, Kasukawa, T, Katayama, S, Gough, J, Frith, MC, Maeda, N, Oyama, R, Ravasi, T, Lenhard, B, Wells, C, Kodzius, R, Shimokawa, K, Bajic, VB, Brenner, SE, Batalov, S, Forrest, ARR, Zavolan, M, Davis, MJ, Wilming, LG, Aidinis, V, Allen, JE, Ambesi-Impiombato, A, Apweiler, R, Aturaliya, RN, Bailey, TL, Bansal, M, Baxter, L, Beisel, KW, Bersano, T, Bono, H (2005) The transcriptional landscape of the mammalian genome. Science 309: pp. 1559-1563 CrossRef
    23. Carninci, P, Hayashizaki, Y (2007) Noncoding RNA transcription beyond annotated genes. Curr Opin Genet Dev 17: pp. 139-144 CrossRef
    24. Consortium, TEP (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489: pp. 57-74 CrossRef
    25. Kim, E-D, Sung, S (2012) Long noncoding RNA: unveiling hidden layer of gene regulatory networks. Trends Plant Sci 17: pp. 16-21 CrossRef
    26. Wu, H-J, Wang, Z-M, Wang, M, Wang, X-J (2013) Widespread long noncoding RNAs as endogenous target mimics for MicroRNAs in plants. Plant Physiol 161: pp. 1875-1884 CrossRef
    27. Boerner, S, McGinnis, KM (2012) Computational identification and functional predictions of long noncoding RNA in zea mays. PLoS ONE 7: pp. e43047 CrossRef
    28. Heo, JB, Sung, S (2011) Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA. Science 331: pp. 76-79 CrossRef
    29. Cabili, MN, Trapnell, C, Goff, L, Koziol, M, Tazon-Vega, B, Regev, A, Rinn, JL (2011) Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 25: pp. 1915-1927 CrossRef
    30. Pauli, A, Valen, E, Lin, MF, Garber, M, Vastenhouw, NL, Levin, JZ, Fan, L, Sandelin, A, Rinn, JL, Regev, A, Schier, AF (2012) Systematic identification of long noncoding RNAs expressed during zebrafish embryogenesis. Genome Res 22: pp. 577-591 CrossRef
    31. Wang, Z, Gerstein, M, Snyder, M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10: pp. 57-63 CrossRef
    32. Li, Z, Zhang, Z, Yan, P, Huang, S, Fei, Z, Lin, K (2011) RNA-seq improves annotation of protein-coding genes in the cucumber genome. BMC Genomics 12: pp. 540 CrossRef
    33. Zhao, C, Waalwijk, C, de Wit, PJGM, Tang, D, van der Lee, T (2013) RNA-Seq analysis reveals new gene models and alternative splicing in the fungal pathogen Fusarium graminearum. BMC Genomics 14: pp. 21 CrossRef
    34. Zhang, G, Guo, G, Hu, X, Zhang, Y, Li, Q, Li, R, Zhuang, R, Lu, Z, He, Z, Fang, X, Chen, L, Tian, W, Tao, Y, Kristiansen, K, Zhang, X, Li, S, Yang, H, Wang, J, Wang, J (2010) Deep RNA sequencing at single base-pair resolution reveals high complexity of the rice transcriptome. Genome Res 20: pp. 646-654 CrossRef
    35. Mortazavi, A, Williams, BA, McCue, K, Schaeffer, L, Wold, B (2008) Mapping and quantifying mammalian transcriptomes by RNA-seq. Nat Methods 5: pp. 621-628 CrossRef
    36. Trapnell, C, Williams, BA, Pertea, G, Mortazavi, A, Kwan, G, van Baren, MJ, Salzberg, SL, Wold, BJ, Pachter, L (2010) Transcript assembly and quantification by RNA-seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28: pp. 511-515 CrossRef
    37. Guttman, M, Garber, M, Levin, JZ, Donaghey, J, Robinson, J, Adiconis, X, Fan, L, Koziol, MJ, Gnirke, A, Nusbaum, C, Rinn, JL, Lander, ES, Regev, A (2010) Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nat Biotechnol 28: pp. 503-510 CrossRef
    38. Meggio, F, Prinsi, B, Negri, AS, Di Lorenzo, GS, Lucchini, G, Pitacco, A, Failla, O, Scienza, A, Cocucci, M, Espen, L (2013) Different biochemical and physiological responses of two grapevine rootstock genotypes to drought and salt treatments. Aust J Grape Wine Res.
    39. Grimplet, J, Hemert, JV, Carbonell-Bejerano, P, D铆az-Riquelme, J, Dickerson, J, Fennell, A, Pezzotti, M, Mart铆nez-Zapater, JM (2012) Comparative analysis of grapevine whole-genome gene predictions, functional annotation, categorization and integration of the predicted gene sequences. BMC Res Notes 5: pp. 213 CrossRef
    40. Campagna, D, Albiero, A, Bilardi, A, Caniato, E, Forcato, C, Manavski, S, Vitulo, N, Valle, G (2009) PASS: a program to align short sequences. Bioinforma Oxf Engl 25: pp. 967-968 CrossRef
    41. Li, W, Feng, J, Jiang, T (2011) IsoLasso: a LASSO regression approach to RNA-seq based transcriptome assembly. J Comput Biol J Comput Mol Cell Biol 18: pp. 1693-1707 CrossRef
    42. Haas, BJ, Delcher, AL, Mount, SM, Wortman JR, RKS, Hannick, LI, Maiti, R, Ronning, CM, Rusch, DB, Town, CD, Salzberg, SL, White, O (2003) Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res 31: pp. 5654-5666 CrossRef
    43. DeYoung, BJ, Innes, RW (2006) Plant NBS-LRR proteins in pathogen sensing and host defense. Nat Immunol 7: pp. 1243-1249 CrossRef
    44. Foissac, S, Sammeth, M (2007) ASTALAVISTA: dynamic and flexible analysis of alternative splicing events in custom gene datasets. Nucleic Acids Res 35: pp. W297-W299 CrossRef
    45. Reddy, ASN (2007) Alternative splicing of pre-messenger RNAs in plants in the genomic era. Annu Rev Plant Biol 58: pp. 267-294 CrossRef
    46. Zhang, B, Pan, X, Cobb, GP, Anderson, TA (2006) Plant microRNA: a small regulatory molecule with big impact. Dev Biol 289: pp. 3-16 CrossRef
    47. Dai, X, Zhao, PX (2011) psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res 39: pp. W155-159 CrossRef
    48. Yang, X, Zhang, H, Li, L (2012) Alternative mRNA processing increases the complexity of microRNA-based gene regulation in Arabidopsis. Plant J 70: pp. 421-431 CrossRef
    49. Manley, JL, Tacke, R (1996) SR proteins and splicing control. Genes Dev 10: pp. 1569-1579 CrossRef
    50. Reddy, ASN (2004) Plant serine/arginine-rich proteins and their role in pre-mRNA splicing. Trends Plant Sci 9: pp. 541-547 CrossRef
    51. Derrien, T, Johnson, R, Bussotti, G, Tanzer, A, Djebali, S, Tilgner, H, Guernec, G, Martin, D, Merkel, A, Knowles, DG, Lagarde, J, Veeravalli, L, Ruan, X, Ruan, Y, Lassmann, T, Carninci, P, Brown, JB, Lipovich, L, Gonzalez, JM, Thomas, M, Davis, CA, Shiekhattar, R, Gingeras, TR, Hubbard, TJ, Notredame, C, Harrow, J, Guig贸, R (2012) The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22: pp. 1775-1789 CrossRef
    52. Kalyna, M, Barta, A (2004) A plethora of plant serine/arginine-rich proteins: redundancy or evolution of novel gene functions?. Biochem Soc Trans 32: pp. 561-564
    53. Palusa, SG, Ali, GS, Reddy, ASN (2007) Alternative splicing of pre-mRNAs of Arabidopsis serine/arginine-rich proteins: regulation by hormones and stresses. Plant J Cell Mol Biol 49: pp. 1091-1107 CrossRef
    54. Tanabe, N, Yoshimura, K, Kimura, A, Yabuta, Y, Shigeoka, S (2007) Differential expression of alternatively spliced mRNAs of Arabidopsis SR protein homologs, atSR30 and atSR45a, in response to environmental stress. Plant Cell Physiol 48: pp. 1036-1049 CrossRef
    55. Syed, NH, Kalyna, M, Marquez, Y, Barta, A, Brown, JWS (2012) Alternative splicing in plants鈥揷oming of age. Trends Plant Sci 17: pp. 616-623 CrossRef
    56. Gan, X, Stegle, O, Behr, J, Steffen, JG, Drewe, P, Hildebrand, KL, Lyngsoe, R, Schultheiss, SJ, Osborne, EJ, Sreedharan, VT, Kahles, A, Bohnert, R, Jean, G, Derwent, P, Kersey, P, Belfield, EJ, Harberd, NP, Kemen, E, Toomajian, C, Kover, PX, Clark, RM, R盲tsch, G, Mott, R (2011) Multiple reference genomes and transcriptomes for Arabidopsis thaliana. Nature 477: pp. 419-423 CrossRef
    57. Ziliotto, F, Corso, M, Rizzini, FM, Rasori, A, Botton, A, Bonghi, C (2012) Grape berry ripening delay induced by a pre-v茅raison NAA treatment is paralleled by a shift in the expression pattern of auxin- and ethylene-related genes. BMC Plant Biol 12: pp. 185 CrossRef
    58. Altschul, SF, Gish, W, Miller, W, Myers, EW, Lipman, DJ (1990) Basic local alignment search tool. J Mol Biol 215: pp. 403-410 CrossRef
    59. Slater, GS, Birney, E (2005) Automated generation of heuristics for biological sequence comparison. BMC Bioinforma 6: pp. 31 CrossRef
    60. Stanke, M, Waack, S (2003) Gene prediction with a hidden Markov model and a new intron submodel. Bioinformatics 19: pp. ii215-ii225 CrossRef
    61. Stanke, M, Steinkamp, R, Waack, S, Morgenstern, B (2004) AUGUSTUS: a web server for gene finding in eukaryotes. Nucleic Acids Res 32: pp. W309-W312 CrossRef
    62. Haas, BJ, Salzberg, SL, Zhu, W, Pertea, M, Allen, JE, Orvis, J, White, O, Buell, CR, Wortman, JR (2008) Automated eukaryotic gene structure annotation using evidence modeler and the program to assemble spliced alignments. Genome Biol 9: pp. R7 CrossRef
    63. Kong, L, Zhang, Y, Ye, Z-Q, Liu, X-Q, Zhao, S-Q, Wei, L, Gao, G (2007) CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Res 35: pp. W345-W349 CrossRef
    64. Zdobnov, EM, Apweiler, R (2001) InterProScan鈥揳n integration platform for the signature-recognition methods in InterPro. Bioinforma Oxf Engl 17: pp. 847-848 CrossRef
    65. Conesa, A, G枚tz, S, Garc铆a-G贸mez, JM, Terol, J, Tal贸n, M, Robles, M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinforma Oxf Engl 21: pp. 3674-3676 CrossRef
    66. Rice, P, Longden, I, Bleasby, A (2000) EMBOSS: the European molecular biology open software suite. Trends Genet TIG 16: pp. 276-277 CrossRef
    67. Lorenzi, HA, Puiu, D, Miller, JR, Brinkac, LM, Amedeo, P, Hall, N, Caler, EV (2010) New assembly, reannotation and analysis of the entamoeba histolytica genome reveal new genomic features and protein content information. PLoS Negl Trop Dis 4: pp. e716 CrossRef
    68. Griebel, T, Zacher, B, Ribeca, P, Raineri, E, Lacroix, V, Guigo, R, Sammeth, M (2012) Modelling and simulating generic RNA-Seq experiments with the flux simulator. Nucleic Acids Res 40: pp. 10073-10083 CrossRef
  • 刊物主题:Plant Sciences; Agriculture; Tree Biology;
  • 出版者:BioMed Central
  • ISSN:1471-2229
文摘
Background Alternative splicing (AS) significantly enhances transcriptome complexity. It is differentially regulated in a wide variety of cell types and plays a role in several cellular processes. Here we describe a detailed survey of alternative splicing in grape based on 124 SOLiD RNAseq analyses from different tissues, stress conditions and genotypes. Results We used the RNAseq data to update the existing grape gene prediction with 2,258 new coding genes and 3,336 putative long non-coding RNAs. Several gene structures have been improved and alternative splicing was described for about 30% of the genes. A link between AS and miRNAs was shown in 139 genes where we found that AS affects the miRNA target site. A quantitative analysis of the isoforms indicated that most of the spliced genes have one major isoform and tend to simultaneously co-express a low number of isoforms, typically two, with intron retention being the most frequent alternative splicing event. Conclusions As described in Arabidopsis, also grape displays a marked AS tissue-specificity, while stress conditions produce splicing changes to a minor extent. Surprisingly, some distinctive splicing features were also observed between genotypes. This was further supported by the observation that the panel of Serine/Arginine-rich splicing factors show a few, but very marked differences between genotypes. The finding that a part the splicing machinery can change in closely related organisms can lead to some interesting hypotheses for evolutionary adaptation, that could be particularly relevant in the response to sudden and strong selective pressures.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700