Derivation, Expansion, and Motor Neuron Differentiation of Human-Induced Pluripotent Stem Cells with Non-Integrating Episomal Vectors and a Defined Xenogeneic-free Culture System
详细信息    查看全文
  • 作者:Wentao Hu ; Yongpei He ; Yongjie Xiong ; Hong Lu ; Hong Chen…
  • 关键词:Human ; induced pluripotent stem cells ; Xeno ; free ; Integration ; free ; Vitronectin ; Motor neurons
  • 刊名:Molecular Neurobiology
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:53
  • 期:3
  • 页码:1589-1600
  • 全文大小:7,595 KB
  • 参考文献:1.Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872CrossRef PubMed
    2.Park IH, Zhao R, West JA, Yabuuchi A, Huo H, Ince TA, Lerou PH, Lensch MW, Daley GQ (2008) Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451:141–146CrossRef PubMed
    3.Soldner F, Hockemeyer D, Beard C, Gao Q, Bell GW, Cook EG, Hargus G, Blak A, Cooper O, Mitalipova M, Isacson O, Jaenisch R (2009) Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell 136:964–977. doi:10.​1016/​j.​cell.​2009.​02.​013 CrossRef PubMed PubMedCentral
    4.Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920CrossRef PubMed
    5.Grskovic M, Javaherian A, Strulovici B, Daley GQ (2011) Induced pluripotent stem cells–opportunities for disease modelling and drug discovery. Nat Rev Drug Discov 10:915–929. doi:10.​1038/​nrd3577 PubMed
    6.Mack AA, Kroboth S, Rajesh D, Wang WB (2011) Generation of induced pluripotent stem cells from CD34+ cells across blood drawn from multiple donors with non-integrating episomal vectors. PLoS One 6:e27956CrossRef PubMed PubMedCentral
    7.Xue Y, Cai X, Wang L, Liao B, Zhang H, Shan Y, Chen Q, Zhou T, Li X, Hou J, Chen S, Luo R, Qin D, Pei D, Pan G (2013) Generating a non-integrating human induced pluripotent stem cell bank from urine-derived cells. PLoS One 8:e70573. doi:10.​1371/​journal.​pone.​0027956 CrossRef PubMed PubMedCentral
    8.Yu J, Chau KF, Vodyanik MA, Jiang J, Jiang Y (2011) Efficient feeder-free episomal reprogramming with small molecules. PLoS One 6:e17557. doi:10.​1371/​journal.​pone.​0017557 CrossRef PubMed PubMedCentral
    9.Fusaki N, Ban H, Nishiyama A, Saeki K, Hasegawa M (2009) Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad Ser B Phys Biol Sci 85:348–362CrossRef PubMed PubMedCentral
    10.Yu J, Hu K, Smuga-Otto K, Tian S, Stewart R, Slukvin II, Thomson JA (2009) Human induced pluripotent stem cells free of vector and transgene sequences. Science 324:797–801. doi:10.​1126/​science.​1172482.​Epub CrossRef PubMed PubMedCentral
    11.Okita K, Yamakawa T, Matsumura Y, Sato Y, Amano N, Watanabe A, Goshima N, Yamanaka S (2013) An efficient nonviral method to generate integration-free human-induced pluripotent stem cells from cord blood and peripheral blood cells. Stem Cells 31:458–466. doi:10.​1002/​stem.​1293 CrossRef PubMed
    12.Nanbo A, Sugden A, Sugden B (2007) The coupling of synthesis and partitioning of EBV’s plasmid replicon is revealed in live cells. EMBO J 26:4252–4262CrossRef PubMed PubMedCentral
    13.Ahrlund-Richter L, De Luca M, Marshak DR, Munsie M, Veiga A, Rao M (2009) Isolation and production of cells suitable for human therapy: challenges ahead. Cell Stem Cell 4:20–26. doi:10.​1016/​j.​stem.​2008.​11.​012 , Epub 2008 Dec 8CrossRef PubMed
    14.Lu HF, Chai C, Lim TC, Leong MF, Lim JK, Gao S, Lim KL, Wan AC (2014) A defined xeno-free and feeder-free culture system for the derivation, expansion and direct differentiation of transgene-free patient-specific induced pluripotent stem cells. Biomaterials 35:2816–2826. doi:10.​1016/​j.​biomaterials.​2013.​12.​050 , Epub 2014 Jan 9CrossRef PubMed
    15.Hu WT, Yan QY, Fang Y, Qiu ZD, Zhang SM (2014) Transient folate deprivation in combination with small-molecule compounds facilitates the generation of somatic cell-derived pluripotent stem cells in mice. J Huazhong Univ Sci Technol-Med Sci 34:151–156. doi:10.​1007/​s11596-014-1249-5 CrossRef PubMed
    16.Hong H, Takahashi K, Ichisaka T, Aoi T, Kanagawa O, Nakagawa M, Okita K, Yamanaka S (2009) Suppression of induced pluripotent stem cell generation by the p53–p21 pathway. Nature 460:1132–1135. doi:10.​1038/​nature08235.​Epub CrossRef PubMed PubMedCentral
    17.Nakagawa M, Takizawa N, Narita M, Ichisaka T, Yamanaka S (2010) Promotion of direct reprogramming by transformation-deficient Myc. Proc Natl Acad Sci U S A 107:14152–14157. doi:10.​1073/​pnas.​1009374107.​Epub CrossRef PubMed PubMedCentral
    18.Rowland TJ, Miller LM, Blaschke AJ, Doss EL, Bonham AJ, Hikita ST, Johnson LV, Clegg DO (2010) Roles of integrins in human induced pluripotent stem cell growth on Matrigel and vitronectin. Stem Cells Dev 19:1231–1240. doi:10.​1089/​scd.​2009.​0328 CrossRef PubMed
    19.Braam SR, Zeinstra L, Litjens S, Ward-van Oostwaard D, van den Brink S, van Laake L, Lebrin F, Kats P, Hochstenbach R, Passier R, Sonnenberg A, Mummery CL (2008) Recombinant vitronectin is a functionally defined substrate that supports human embryonic stem cell self- renewal via alphavbeta5 integrin. Stem Cells 26:2257–2265. doi:10.​1634/​stemcells.​2008-0291 , Epub 2008 Jul 3CrossRef PubMed
    20.Qu Q, Li D, Louis KR, Li X, Yang H, Sun Q, Crandall SR, Tsang S, Zhou J, Cox CL, Cheng J, Wang F (2014) High-efficiency motor neuron differentiation from human pluripotent stem cells and the function of islet-1. Nat Commun 5:3449. doi:10.​1038/​ncomms4449 PubMed
    21.Hu BY, Zhang SC (2009) Differentiation of spinal motor neurons from pluripotent human stem cells. Nat Protoc 4:1295–1304. doi:10.​1038/​nprot.​2009.​127 , Epub 2009 Aug 20CrossRef PubMed PubMedCentral
    22.Hester ME, Murtha MJ, Song S, Rao M, Miranda CJ, Meyer K, Tian J, Boulting G, Schaffer DV, Zhu MX, Pfaff SL, Gage FH, Kaspar BK (2011) Rapid and efficient generation of functional motor neurons from human pluripotent stem cells using gene delivered transcription factor codes. Mol Ther 19:1905–1912. doi:10.​1038/​mt.​2011.​135 , Epub 2011 Jul 19CrossRef PubMed PubMedCentral
    23.Chen G, Gulbranson DR, Hou Z, Bolin JM, Ruotti V, Probasco MD, Smuga-Otto K, Howden SE, Diol NR, Propson NE, Wagner R, Lee GO, Antosiewicz-Bourget J, Teng JM, Thomson JA (2011) Chemically defined conditions for human iPSC derivation and culture. Nat Meth 8:424–429. doi:10.​1038/​nmeth.​1593 , Epub 2011 Apr 10CrossRef
    24.Lin T, Ambasudhan R, Yuan X, Li W, Hilcove S, Abujarour R, Lin X, Hahm HS, Hao E, Hayek A, Ding S (2009) A chemical platform for improved induction of human iPSCs. Nat Methods 6:805–808. doi:10.​1038/​nmeth.​1393.​Epub CrossRef PubMed PubMedCentral
    25.Silva J, Barrandon O, Nichols J, Kawaguchi J, Theunissen TW, Smith A (2008) Promotion of reprogramming to ground state pluripotency by signal inhibition. PLoS Biol 6:2237. doi:10.​1371/​journal.​pbio.​0060253 CrossRef
    26.Lai WH, Ho JC, Lee YK, Ng KM, Au KW, Chan YC, Lau CP, Tse HF, Siu CW (2010) ROCK inhibition facilitates the generation of human-induced pluripotent stem cells in a defined, feeder-, and serum-free system. Cell Reprogramming 12:641–653. doi:10.​1089/​cell.​2010.​0051 , Epub 2010 Sep 21CrossRef
    27.Lu HF, Narayanan K, Lim SX, Gao S, Leong MF, Wan AC (2012) 3D microfibrous scaffold for long-term human pluripotent stem cell self-renewal under chemically defined conditions. Biomaterials 33:2419–2430. doi:10.​1016/​j.​biomaterials.​2011.​11.​077 , Epub 2011 Dec 21CrossRef PubMed
    28.Kim HT, Lee KI, Kim DW, Hwang DY (2013) An ECM-based culture system for the generation and maintenance of xeno-free human iPS cells. Biomaterials 34:1041–1050. doi:10.​1016/​j.​biomaterials.​2012.​10.​064 , Epub 2012 Nov 13CrossRef PubMed
    29.Izadpanah R, Kaushal D, Kriedt C, Tsien F, Patel B, Dufour J, Bunnell BA (2008) Long-term in vitro expansion alters the biology of adult mesenchymal stem cells. Cancer Res 68:4229–4238. doi:10.​1158/​0008-5472 CrossRef PubMed PubMedCentral
    30.Si-Tayeb K, Noto FK, Sepac A, Sedlic F, Bosnjak ZJ, Lough JW, Duncan SA (2010) Generation of human induced pluripotent stem cells by simple transient transfection of plasmid DNA encoding reprogramming factors. BMC Dev Biol 10:81. doi:10.​1186/​ 1471-213X-10-81 CrossRef PubMed PubMedCentral
    31.Jia F, Wilson KD, Sun N, Gupta DM, Huang M, Li Z, Panetta NJ, Chen ZY, Robbins RC, Kay MA, Longaker MT, Wu JC (2010) A nonviral minicircle vector for deriving human iPS cells. Nat Methods 7:197–199. doi:10.​1038/​nmeth.​1426 , Epub 2010 Feb 7CrossRef PubMed PubMedCentral
    32.Warren L, Manos PD, Ahfeldt T, Loh YH, Li H, Lau F, Ebina W, Mandal PK, Smith ZD, Meissner A, Daley GQ, Brack AS, Collins JJ, Cowan C, Schlaeger TM, Rossi DJ (2010) Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7:618–630. doi:10.​1016/​j.​stem.​2010.​08.​012 , Epub 2010 Sep 30CrossRef PubMed PubMedCentral
    33.Chou BK, Mali P, Huang X, Ye Z, Dowey SN, Resar LM, Zou C, Zhang YA, Tong J, Cheng L (2011) Efficient human iPS cell derivation by a non-integrating plasmid from blood cells with unique epigenetic and gene expression signatures. Cell Res 21:518–529. doi:10.​1038/​cr.​2011.​12 , Epub 2011 Jan 18CrossRef PubMed PubMedCentral
    34.Polo JM, Liu S, Figueroa ME, Kulalert W, Eminli S, Tan KY, Apostolou E, Stadtfeld M, Li Y, Shioda T, Natesan S, Wagers AJ, Melnick A, Evans T, Hochedlinger K (2010) Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nat Biotechnol 28:848–855. doi:10.​1038/​nbt.​1667 , Epub 2010 Jul 19CrossRef PubMed PubMedCentral
    35.Hamanaka S, Yamaguchi T, Kobayashi T, Kato-Itoh M, Yamazaki S, Sato H, Umino A, Wakiyama Y, Arai M, Sanbo M, Hirabayashi M, Nakauchi H (2011) Generation of germline -competent rat induced pluripotent stem cells. PLoS One 6:e22008. doi:10.​1371/​ journal.​ pone.​0022008 , Epub 2011 Jul 15CrossRef PubMed PubMedCentral
    36.Okita K, Matsumura Y, Sato Y, Okada A, Morizane A, Okamoto S, Hong H, Nakagawa M, Tanabe K, Tezuka K, Shibata T, Kunisada T, Takahashi M, Takahashi J, Saji H, Yamanaka S (2011) A more efficient method to generate integration-free human iPS cells. Nat Methods 8:409–412. doi:10.​1038/​nmeth.​1591 , Epub 2011 Apr 3CrossRef PubMed
    37.Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K (2008) Induced pluripotent stem cells generated without viral integration. Science 322:945–949. doi:10.​1126/​science.​1162494 , Epub 2008 Sep 25CrossRef PubMed PubMedCentral
    38.Li W, Ding S (2010) Small molecules that modulate embryonic stem cell fate and somatic cell reprogramming. Trends Pharmacol Sci 31:36–45. doi:10.​1016/​j.​tips.​2009.​10.​002 , Epub 2009 Nov 4CrossRef PubMed
    39.Ross PJ, Suhr ST, Rodriguez RM, Chang EA, Wang K, Siripattarapravat K, Ko T, Cibelli JB (2010) Human-induced pluripotent stem cells produced under xeno-free conditions. Stem Cells Dev 19:1221–1229. doi:10.​1089/​scd.​2009.​0459 CrossRef PubMed
    40.Rodríguez-Pizà I, Richaud-Patin Y, Vassena R, González F, Barrero MJ, Veiga A, Raya A, Izpisúa Belmonte JC (2010) Reprogramming of human fibroblasts to induced pluripotent stem cells under xeno-free conditions. Stem Cells 28:36–44. doi:10.​1002/​stem.​248 PubMed
  • 作者单位:Wentao Hu (1) (2)
    Yongpei He (1)
    Yongjie Xiong (1)
    Hong Lu (2)
    Hong Chen (3)
    Limin Hou (3)
    Zhandong Qiu (1)
    Yu Fang (1)
    Suming Zhang (1)

    1. Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
    2. Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
    3. Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
  • 刊物主题:Neurosciences; Neurobiology; Cell Biology; Neurology;
  • 出版者:Springer US
  • ISSN:1559-1182
文摘
Induced pluripotent stem cells (iPSCs) generated from patient-derived somatic cells provides the opportunity for model development in order to study patient-specific disease states with the potential for drug discovery. However, use of lentivirus and exposure of iPSCs to animal-derived products limit their therapeutic utility and affect lineage differentiation and subsequent downstream functionality of iPSC derivatives. Within the context of this study, we describe a simple and practical protocol enabling the efficient reprogramming of terminally differentiated adult fibroblasts into integration-free human iPSCs (hiPSCs) using a combination of episomal plasmids with small molecules (SMs). Using this approach, there was a 10-fold increase in reprogramming efficiency over single plasmid vector-based methods. We obtained approximately 100 iPSCs colonies from 1 × 105 human adult dermal fibroblasts (HADFs) and achieved approximately 0.1 % reprogramming efficiencies. Concurrently, we developed a highly conducive culture system using xeno-free media and human vitronectin. The resulting hiPSCs were free of DNA integration and had completely lost episomal vectors, maintained long-term self-renewal, featured a normal karyotype, expressed pluripotent stem cell markers, and possessed the capability of differentiating into components of all three germ layers in vivo. Finally, we demonstrate that the integration-free hiPSCs could be differentiated into motor neurons under xeno-free culture conditions. This induction method will promote the derivation of patient-specific integration-free and xeno-free iPSCs and improve the strategy for motor neuron derivation. Our approach provides a useful tool for human disease models, drug screen, and clinical applications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700