Capacity estimates, Liouville’s theorem, and singularity removal for mappings with bounded (p, q)-distortion
详细信息    查看全文
  • 作者:A. N. Baykin ; S. K. Vodop’yanov
  • 关键词:mappings with bounded weighted (p ; q) ; distortion ; capacity estimate ; Liouville ; type theorem ; singularity removal
  • 刊名:Siberian Mathematical Journal
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:56
  • 期:2
  • 页码:237-261
  • 全文大小:364 KB
  • 参考文献:1. Sobolev S. L., Some Applications of Functional Analysis in Mathematical Physics, Amer. Math. Soc., Providence (1991).
    2. Reshetnyak Yu. G., Space Mappings with Bounded Distortion, Amer. Math. Soc., Providence (1989).
    3. Federer H., Geometric Measure Theory, Springer-Verlag, New York (1969).MATH
    4. Haj?lasz P., “Change of variables formula under minimal assumptions,-Colloq. Math., 64, No. 1, 93-01 (1993).MathSciNet
    5. Vodop’yanov S. K., -em class="EmphasisTypeItalic">F-Differentiability on Carnot groups in different topologies and related topics,-Studies on Analysis and Geometry [in Russian], pp. 603-70 (2000).
    6. Vodop’yanov S. K., “Differentiability of maps of Carnot groups of Sobolev classes,-Sb.: Math., 194, No. 6, 857-77 (2003).MathSciNet
    7. Whitney H., “On totally differentiable and smooth functions,-Pacific J. Math., 1, No. 1, 143-59 (1951).View Article MATH MathSciNet
    8. Ukhlov A. and Vodopyanov S. K., “Mappings associated with weighted Sobolev spaces,-Complex Anal. Dynam. Syst. III, Contemp. Math., 455, 369-82 (2008).MathSciNet
    9. Vodop’yanov S. K. and Ukhlov A. D., “Superposition operators in Sobolev spaces,-Russian Math. (Iz. VUZ), 46, No. 10, 9-1 (2002).MathSciNet
    10. Kilpel?inen T., “Weighted Sobolev spaces and capacity,-Ann. Acad. Sci. Fenn., AI. Math., 19, 95-13 (1994).MATH
    11. Rickman S., Quasiregular Mappings, Springer-Verlag, Berlin (1993).View Article MATH
    12. Vodop’yanov S. K. and Markina I. G., “Local estimates on change of mappings with bounded s-distortion on Carnot groups,-in: 12 Siberian Mathematical School on Algebra, Geometry, and Mathematical Physics (Novosibirsk, 18-3 July, 1998), Izdat. Sobolev Inst. Mat., Novosibirsk, 1999, pp. 28-3.
    13. Troyanov M. and Vodop’yanov S., “Liouville type theorems for mappings with bounded (co)-distortion,-Ann. Inst. Fourier (Grenoble), 52, No. 6, 1753-784 (2002).View Article MATH MathSciNet
    14. Vodop’yanov S. K. and Ukhlov A., “Mappings with bounded (P,Q)-distortion on Carnot groups,-Bull. Sci. Math., 134, No. 6, 605-34 (2010).View Article MATH MathSciNet
    15. Vodop’yanov S. K., “On regularity of mappings inverse to Sobolev mappings,-Dokl. Math., 78, No. 3, 891-95 (2008).View Article MATH MathSciNet
    16. Vodop’yanov S. K., “Mappings with bounded (co)-distortion and classes of Sobolev functions,-Dokl. Akad. Nauk, 440, No. 3, 301-05 (2011).
    17. Vodop’yanov S. K., “Regularity of mappings inverse to Sobolev mappings,-Sb.: Math., 203, No. 10, 1383-410 (2012).MATH MathSciNet
    18. Vodop’yanov S. K., “On the regularity of the Poletskii function under weak analytic assumptions on the given mapping,-Dokl. Math., 89, No. 2, 157-61 (2014).View Article MATH MathSciNet
    19. Menchoff D. E., “Sur une generalization d’un theoreme de M. H. Bohr,-Mat. Sb., Vol. 2, No. 2, 339-56 (1937).
    20. Poletski? E. A., “The modulus method for nonhomeomorphic quasiconformal mappings,-Math. USSR-Sb., 12, No. 2, 260-70 (1970).View Article
    21. Heinonen J., Kilpel?inen T., and Martio O., Nonlinear Potential Theory of Degenerate Elliptic Equations, Clarendon Press, Oxford (1993).MATH
    22. Kruglikov V. I., “Capacity of condensers and spatial mappings quasiconformal in the mean,-Math. USSR-Sb., 58, No. 1, 185-05 (1987).View Article MATH
    23. Ukhlov A. D., “On mappings generating the embeddings of Sobolev spaces,-Siberian Math. J., 34, No. 1, 165-71 (1993).View Article MATH MathSciNet
    24. Vodop’yanov S. K. and Ukhlov A. D., “Sobolev spaces and (P,Q)-quasiconformal mappings of Carnot groups,-Siberian Math. J., 39, No. 4, 665-82 (1998).View Article MathSciNet
    25. Sevost’yanov E. A., Study of Spatial Maps of the Geometric Methods [in Russian], Naukova Dumka, Kiev (2014).
    26. Ponomarev S. P., “Property N of homeomorphisms of the class W1 p,-Siberian Math. J., 28, No. 2, 291-98 (1987).View Article MATH MathSciNet
    27. Vodop’yanov S. K., “Topological and geometrical properties of mappings with summable Jacobian in Sobolev classes. I,-Siberian Math. J., 41, No. 1, 19-9 (2000).View Article MathSciNet
    28. Radó T. and Reichelderfer P., Continuous Transformations in Analysis with an Introduction to Algebraic Topology, Springer-Verlag, Berlin, G?ttingen, and Heidelberg (1955).MATH
    29. Vodop’yanov S. K. and Ukhlov A. D., “Set functions and their applications in the theory of Lebesgue and Sobolev. I,-Siberian Adv. Math, 14, No. 4, 78-25 (2004).MATH MathSciNet
    30. Reshetnyak Yu. G., “Some geometrical properties of functions and mappings with generalized derivatives,-Siberian Math. J., 7, No. 4, 704-32 (1966).View Article MATH
    31. Martio O., Rickman S., and V?is?l? J., “Definitions for quasiregular mappings,-Ann. Acad. Sci. Fenn. Ser. A I Math., 448, 1-0 (1969).
    32. Martio O., “A capacity inequality for quasiregular mappings,-Ann. Acad. Sci. Fenn. Ser. A I Math., 474, 1-8 (1970).
    33. Maz’ya V. G., Sobolev Spaces, Springer-Verlag, Berlin (2
  • 作者单位:A. N. Baykin (1) (2)
    S. K. Vodop’yanov (1) (2)

    1. Sobolev Institute of Mathematics, Moscow, Russia
    2. Novosibirsk State University, Novosibirsk, Russia
  • 刊物类别:Mathematics and Statistics
  • 刊物主题:Mathematics
    Mathematics
    Russian Library of Science
  • 出版者:Springer New York
  • ISSN:1573-9260
文摘
The mappings with bounded weighted (p, q)-distortion are natural generalizations of the class of mappings with bounded distortion which appears as a doubly indexed scale for p = q = n in the absence of weight functions. In case n ?1 < q ?p = n, the mappings with bounded (p, q)-distortion were studied previously in a series of articles under the additional assumption that the mapping enjoys Luzin’s N-property. In this article we present the first facts of the theory of mappings with bounded (p, q)-distortion which are obtained without additional analytical assumptions. The core of the theory consists of the new analytical properties of pushforward functions; in particular, we prove that the gradient of the pushforward function vanishes almost everywhere on the image of the branch set. Some estimates are given on the capacity of the images of condensers under mappings with bounded (p, q)-distortion. We obtain Liouville-type theorems and the singularity removal theorems for the mappings of this class, and we apply these theorems to classifying manifolds.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700