Rhyolitic volcanism of the central Snake River Plain: a review
详细信息    查看全文
  • 作者:B. S. Ellis (1)
    J. A. Wolff (2)
    S. Boroughs (2)
    D. F. Mark (3)
    W. A. Starkel (2)
    B. Bonnichsen (4)
  • 关键词:Snake River Plain ; Rhyolite ; Bimodal ; Ignimbrite ; Low δ 18O
  • 刊名:Bulletin of Volcanology
  • 出版年:2013
  • 出版时间:August 2013
  • 年:2013
  • 卷:75
  • 期:8
  • 全文大小:1231KB
  • 参考文献:1. Almeev RR, Bolte T, Nash BP, Holtz F, Erdmann M, Cathey HE (2012) High-temperature, low-H2O silicic magmas of the Yellowstone hotspot: an experimental study of rhyolite from the Bruneau–Jarbidge Eruptive Center, Central Snake River Plain, USA. J Petrol 53(9):1837-866 CrossRef
    2. Anders M, Saltzman J, Hemming SJ (2009) Neogene tephra correlations in eastern Idaho and Wyoming: implications for Yellowstone hotspot-related volcanism and tectonic activity. Geol Soc Am Bull 121(5-):837-56. doi:10.1130/B26300.1 CrossRef
    3. Andrews GDM, Branney MJ (2011) Emplacement and rheomorphic deformation of a large, lava-like rhyolitic ignimbrite: Grey’s Landing, southern Idaho. Geol Soc Am Bull 123:725-43. doi:10.1130/B30167.1 CrossRef
    4. Andrews GDM, Branney MJ, Bonnichsen B, McCurry M (2008) Rhyolitic ignimbrites in the Rogerson Graben, southern Snake River Plain volcanic province: volcanic stratigraphy, eruption history and basin evolution. Bull Volcanol 70(3):269-91. doi:10.1007/s00445-007-0139-0 CrossRef
    5. Armstrong RL, Leeman WP, Malde HE (1975) K–Ar dating of quaternary and neogene volcanic rocks of the Snake River Plain, Idaho. Am J Sci 275:225-51 CrossRef
    6. Armstrong RL, Taubnek WH, Hales PO (1977) Rb–Sr and K–Ar geochronometry of Mesozoic granitic rocks and their Sr isotopic composition, Oregon, Washington, and Idaho. Geol Soc Am Bull 88:397-11 CrossRef
    7. Bachmann O, Dungan MA, Lipman PW (2002) The Fish Canyon Magma Body San Juan Volcanic Field, Colorado: rejuvenation and eruption of an upper crustal batholith. J Petrol 43(8):1469-503 CrossRef
    8. Bernt J, Bonnichsen B (1982) Pre-Cougar Point Tuff volcanic rocks near the Idaho–Nevada border, Owyhee County, Idaho. Idaho Bur Mines Geol Bull 26:321-30, In: Bonnichsen B, Breckenridge RM (eds), Cenozoic geology of Idaho
    9. Bindeman IN, Valley JW (2001) Low-δ18O rhyolites from Yellowstone; magmatic evolution based on analyses of zircons and individual phenocrysts. J Petrol 42:1491-517 CrossRef
    10. Bindeman IN, Watts KE, Schmitt AK, Morgan LA, Shanks PWC (2007) Voluminous low / δ 18O magmas in the late Miocene Heise Volcanic Field, Idaho: implications for the fate of Yellowstone hotspot calderas. Geology 35(11):1019-022. doi:10.1130/G24141A.1 CrossRef
    11. Bindeman IN, Fu B, Kita NT, Valley JW (2008) Origin and evolution of silicic magmatism at Yellowstone based on ion microprobe analysis of isotopically zoned zircons. J Petrol 49:163-93 CrossRef
    12. Bonnichsen B (1982) The Bruneau–Jarbidge eruptive center; South-western Idaho. Idaho Bur Min Geol Bull 26:237-54, In: Bonnichsen B, Breckenridge RM (eds) Cenozoic geology of Idaho
    13. Bonnichsen B (1982b) Rhyolite lava flows in the Bruneau–Jarbidge Eruptive Centre, southwestern Idaho. In: Bonnichsen B, Breckenridge RM (eds) Cenozoic geology of Idaho. Idaho Bur Mines Geol Bull 26:283-20
    14. Bonnichsen B, Citron GP (1982) The Cougar Point Tuff, southwestern Idaho. Idaho Bur Mines Geol Bull 26:255-81, In: Bonnichsen B, Breckenridge RM (eds) Cenozoic geology of Idaho
    15. Bonnichsen B, Godchaux MM (2002) Late Miocene, Pliocene, and Pleistocene geology of southwestern Idaho with emphasis on basalts in the Bruneau–Jarbidge, Twin Falls, and western Snake River Plain regions. In: Bonnichsen B, White CM, McCurry M (eds) Tectonic and magmatic evolution of the Snake River Plain volcanic province. Idaho Geol Surv Bull 30:233-12
    16. Bonnichsen B, Kauffman DF (1987) Physical features of rhyolite lava flows in the Snake River Plain volcanic province, Southwestern Idaho. Geol Soc Am 212:119-45, Special Paper
    17. Bonnichsen B, Leeman WP, Honjo N, McIntosh WC, Godchaux MM (2008) Miocene silicic volcanism in southwestern Idaho: geochronology, geochemistry, and evolution of the central Snake River Plain. Bull Volcanol 70:315-42. doi:10.1007/s00445-007-0141-6 CrossRef
    18. Boroughs S, Wolff J, Bonnichsen B, Godchaux M, Larson P (2005) Large-volume, low- / δ 18O rhyolites of the central Snake River Plain, Idaho, USA. Geology 33:821-24. doi:10.1130/G21723.1 CrossRef
    19. Boroughs S, Wolff JA, Bonnichsen B, Ellis BS, Larson P (2012a) Evaluating models of the origin of Miocene low -em class="a-plus-plus">δ 18O rhyolites of the Yellowstone/Columbia River large igneous province. Earth Plan Sci Lett 313-14:45-5 CrossRef
    20. Boroughs S, Wolff JA, Starkel WA (2012b) A simple petrogenetic model for the formation of Miocene low- / δ 18O rhyolites of the Yellowstone Hotspot track, USA. AGU Fall Meeting San Francisco DI51A-2342
    21. Brand BD, White CM (2007) Origin and stratigraphy of phreatomagmatic deposits at the Pleistocene Sinker Butte Volcano, Western Snake River Plain, Idaho. J Volcanol Geotherm Res 160:319-39 CrossRef
    22. Branney MJ, Barry TL, Godchaux M (2004) Sheathfolds in rheomorphic ignimbrites. Bull Volcanol 66:485-91 CrossRef
    23. Branney MJ, Bonnichsen B, Andrews GDM, Ellis B, Barry TL, McCurry M (2008) ‘Snake River (SR) -type-volcanism at the Yellowstone hotspot track: distinctive products from unusual, high-temperature silicic super-eruptions. Bull Volcanol 70:293-14. doi:10.1007/s00445-007-0140-7 CrossRef
    24. Brueseke ME, Hart WK (2009) Intermediate composition magma production in an intracontinental setting: unusual andesites and dacites of the mid-Miocene Santa Rosa–Calico volcanic field, northern Nevada. J Volcanol Geotherm Res 188:197-13 CrossRef
    25. Brueseke ME, Hart WK, Heizler MT (2008) Diverse mid-Miocene silicic volcanism associated with the Yellowstone–Newberry thermal anomaly. Bull Volcanol 70:343-60 CrossRef
    26. Camp VE (1995) Mid-Miocene propagation of the Yellowstone mantle plume head beneath the Columbia River basalt source region. Geology 23:435-38 CrossRef
    27. Camp VE, Hanan BB (2008) A plume-triggered delamination origin for the Columbia River basalt group. Geosph 4:480-95 CrossRef
    28. Camp VE, Ross ME (2004) Mantle dynamics and genesis of mafic magmatism in the intermontane Pacific Northwest. J Geophys Res 109, B08204. doi:10.1029/2003JB002838 CrossRef
    29. Carlson RW, Hart WK (1988) Flood basalt volcanism in the northwestern United States. In: Macdougall JD (ed) Continental flood basalts. Kluwer Academic Publishers, Dordrecht, pp 35-2 CrossRef
    30. Cathey HE, Nash BP (2004) The Cougar Point Tuff: implications for thermochemical zonation and longevity of high-temperature, large-volume silicic magmas of the Miocene Yellowstone hotspot. J Petrol 45:27-8. doi:10.1093/petrology/egg081 CrossRef
    31. Cathey HE, Nash BP (2009) Pyroxene thermometry of rhyolite lavas of the Bruneau–Jarbidge eruptive center, Central Snake River Plain. J Volcanol Geotherm Res 188(1-3):173-85 CrossRef
    32. Cathey HE, Nash BP, Allen CM, Camphell IH, Valley JW, Kita N (2008) U–Pb zircon geochronology and Ti-in-zircon thermometry of large-volume low / δ 18O magmas of the Miocene Yellowstone hotspot. Geochim Cosmochim Acta 72:A143
    33. Christiansen RL (2001) The Quaternary and Pliocene Yellowstone plateau volcanic field of Wyoming, Idaho, and Montana. U.S. Geol Sur Prof Paper 729-G, 145 p
    34. Christiansen EH, McCurry M (2008) Contrasting origins of Cenozoic silicic volcanic rocks from the western Cordillera of the United States. Bull Volcanol 70:251-67 CrossRef
    35. Christiansen RL, Foulger GR, Evans JR (2002) Upper mantle origin of the Yellowstone hotspot. Geol Soc Am Bull 114(10):1245-256 CrossRef
    36. Coble MA, Mahood GA (2012) Initial impingement of the Yellowstone plume located by widespread silicic volcanism contemporaneous with Columbia River flood basalts. Geology 40:655-58 CrossRef
    37. Criss RJ, Taylor HP (1983) An 18O/16O and D/H study of Tertiary hydrothermal systems in the southern half of the Idaho Batholith. Geol Soc Am Bull 94(5):640-63 CrossRef
    38. Criss RJ, Ekren EB, Hardyman RF (1984) Casto ring zone; a 4,500-km2 fossil hydrothermal system in the Challis volcanic field, central Idaho. Geology 12:331-34 CrossRef
    39. Crowley JL, Schoene B, Bowring SA (2007) U–Pb dating of zircon in the Bishop Tuff at the millennial scale. Geology 35:1123-126 CrossRef
    40. Davidson JP, Morgan DJ, Charlier BLA, Harlou R, Hora JM (2007) Microsampling and isotopic analysis of igneous rocks: implications for the study of magmatic systems. Ann Rev Earth Plan Sci 35:273-11 CrossRef
    41. Davis OK, Ellis B (2010) Early occurrence of sagebrush steppe, Miocene (12 Ma) on the Snake River Plain. Rev Palaeobot Palynol 160:172-80 CrossRef
    42. Ellis B, Branney MJ (2010) Silicic phreatomagmatism in the Snake River Plain: the Deadeye Member. Bull Volcanol 72(10):1241-257. doi:10.1007/s00445-010-0400-9 CrossRef
    43. Ellis BS, Wolff JA (2012) Complex storage of rhyolite in the central Snake River Plain. J Volcanol Geotherm Res 211-12:1-1 CrossRef
    44. Ellis BS, Barry TL, Branney MJ, Wolff JA, Bindeman I, Wilson R, Bonnichsen B (2010) Petrologic constraints on the development of a large-volume, high temperature, silicic magma system: the Twin Falls eruptive centre, central Snake River Plain. Lithos 120:475-89. doi:10.1016/j.lithos.2010.09.008 CrossRef
    45. Ellis BS, Branney MJ, Barry TL, Barfod D, Bindeman I, Wolff JA, Bonnichsen B (2012a) Geochemical correlation of three large-volume ignimbrites from the Yellowstone hotspot track, Idaho, USA. Bull Volcanol 74:261-77 CrossRef
    46. Ellis BS, Mark DF, Pritchard CJ, Wolff JA (2012b) Temporal dissection of the Huckleberry Ridge Tuff using the 40Ar/39Ar dating technique. Qua Geochron 9:34-1 CrossRef
    47. Fleck RJ, Criss RE (1985) Strontium and oxygen isotopic variations in Mesozoic and Tertiary plutons of central Idaho. Contrib Mineral Petrol 90:291-08 CrossRef
    48. Fleck RJ, Criss RE (2004) Location, age, and tectonic significance of the Western Idaho Suture Zone (WISZ). Open-File Report—US Geol Surv
    49. Gaschnig RM, Vervoort JD, Lewis RS, Tikoff B (2011) Isotopic evolution of the Idaho batholith and challis intrusive province, Northern US Cordillera. J Petrol 52:2397-429. doi:10.1093/petrology/egr050 CrossRef
    50. Geist D, Richards MA (1993) Origin of the Columbia plateau and the Snake River Plain: deflection of the Yellowstone plume. Geology 21:789-92 CrossRef
    51. Giordano D, Russell JK, Dingwell DB (2008) Viscosity of magmatic liquids: a model. Earth Plan Sci Lett 271:123-34 CrossRef
    52. Godchaux MM, Bonnichsen B (2002) Syneruptive magma-water and posteruptive lava–water interactions in the Western Snake River Plain, Idaho, during the past 12 million years. In: Bonnichsen B, White CM, McCurry M (eds) Tectonic and magmatic evolution of the Snake River Plain volcanic province. Idaho Geol Surv Bull 30:387-34
    53. Godchaux MM, Bonnichsen B, Jenks MD (1992) Types of phreatomagmatic volcanoes in the western Snake River Plain, Idaho, USA. J Volcanol Geotherm Res 52(1-):1-5 CrossRef
    54. Hales TC, Abt DL, Humphreys ED, Roering JJ (2005) Delamination origin for the Columbia River flood basalts and Wallowa Mountain uplift in NE Oregon, U.S.A. Nature 438(8):842-45. doi:10.1038/nature04313
    55. Henry CD, Wolff JA (1992) Distinguishing strongly rheomorphic tuffs from extensive silicic lavas. Bull Volcanol 54:171-86
    56. Henry CD, Castor SB, McIntosh WC, Heizler MT, Cuney M, Chemillac R (2006) Timing of oldest Steens basalt magmatism from precise dating of silicic volcanic rocks, McDermitt caldera and northwest Nevada Volcanic Field. Eos Transactions AGU 87 (52)
    57. Hildreth W (1979) The BishopTuff: evidence for the origin of compositional zonation in silicic magma chambers. In: Chapin CE, Elston WE (eds) Ash-flow tuffs. Geol Soc Am, Special Paper 180, 43-75
    58. Hildreth W (1981) Gradients in silicic magma chambers: implications for lithospheric magmatism. J Geophys Res 86:10153-0192 CrossRef
    59. Hildreth W, Wilson CJN (2007) Compositional zoning of the Bishop Tuff. J Petrol 48(5):951-99 CrossRef
    60. Hill M, Schmitz MD (2011) Processes of magma evolution and crystal recycling recorded in zircon populations of large volume rhyolites in the western Mount Bennett Hills, Central Snake River Plain, Idaho, and the implications for constraining the pre- and syn- eruptive evolution of silicic magmas. Geol Soc Am Abstr Prog 43(4):64
    61. Honjo N, Leeman WP (1987) Origin of hybrid ferrolatite lavas from the Magic Reservoir eruptive centre, Snake River Plain, Idaho. Contrib Mineral Petrol 96:163-73 CrossRef
    62. Honjo N, Bonnichsen B, Leeman WP, Stormer JC (1992) Mineralogy and geothermometry of high-temperature rhyolites from the central and western Snake River Plain. Bull Volcanol 54:220-37
    63. Hooper PR, Binger GB, Lees KR (2002) Ages of the Steens and Columbia River flood basalts and their relationship to extension-related calc-alkalic volcanism in eastern Oregon. Geol Soc Am Bull 114:43-0 CrossRef
    64. Hooper PR, Camp VE, Reidel SP, Ross ME (2007) The origin of the Columbia River Flood Basalt province: plume versus non-plume models. In: Foulger, G. and Jurdy (eds) Plates, plumes and planetary processes. Geol Soc Am Spec Pap 430:635-668
    65. Hughes SS, McCurry M (2002) Bulk major and trace element evidence for a time-space evolution of Snake river Plain rhyolites, Idaho. In: Bonnichsen B, White CM, McCurryM (eds) Tectonic and magmatic evolution of the Snake River Plain volcanic province, vol. 30. Idaho Geological Survey Bulletin, pp. 161-76
    66. James DE, Fouch MJ, Carlson RW, Roth JB (2011) Slab fragmentation, edge flow and the origin of the Yellowstone hotspot track. Earth Plan Sci Lett 311:124-35 CrossRef
    67. Jarboe NA, Coe RS, Renne PR, Glen JM, Maniken EA (2008) Quickly erupted volcanic sections of the Steens Basalt, Columbia River Basalt Group: Secular variation, tectonic rotation, and the Steens Mountain reversal. Geochem Geophys Geosyst 9, Q11010. doi:10.1029/2008GC002067 CrossRef
    68. Jarboe NA, Coe RS, Renne PR, Glen JM (2010) The age of the Steens reversal and the Columbia River Basalt Group. Chem Geol 274:158-68 CrossRef
    69. Jenks MD, Bonnichsen B (1989) Subaqueous basalt eruptions into Pliocene Lake Idaho, Snake River Plain, Idaho. In: Chamberlain VE, Breckenridge RM, Bonnichsen B (eds) Guidebook to the geology of Northern and Western Idaho and surrounding area. Idaho Geol Surv Bull 28:17-4
    70. Jordan BT, Grunder AL, Duncan RA, Deino AL (2004) Geochronology of age-progressive volcanism of the Oregon High Plains: implications for the plume interpretation of Yellowstone. J Geophys Res 109:B10202–B10221 CrossRef
    71. Kellogg KS, Harlan SS, Mehnert HH, Snee LW, Pierce KL, Hackett WR, Rogers DW (1994) Major 10.2 Ma rhyolitic volcanism in the eastern Snake River Plain, Idaho—isotopic age and stratigraphic setting of the Arbon Valley Tuff member of the starlight formation. US Geol Surv Bull 2091:18
    72. Kiilsgaard TH, Lewis RS, Bennett EH (2001) Plutonic and hypabyssal rocks of the Hailey 1°?×-° Quadrangle, Idaho. US Geol Surv Bull 2064-U
    73. Knesel KM, Davidson JP, Duffield WA (1999) Evolution of silicic magma through assimilation and subsequent recharge: evidence from Sr isotopes in sanidine phenocrysts, Taylor Creek Rhyolite, NM. J Petrol 40:773-86. doi:10.1093/petrology/40.5.773 CrossRef
    74. Konstantinou A, Strickland A, Miller EL, Wooden JW (2012) Multi-stage Cenozoic extension of the Albion-Raft River–Grouse Creek metamorphic core complex: geochronologic and stratigraphicconstraints. Geosphere 8:1429-466 CrossRef
    75. Lavallée Y, de Silva SL, Salas G, Byrnes JM (2006) Explosive volcanism (VEI 6) without caldera formation: insight from Huaynaputina volcano, southern Peru. Bull Volcanol 68:333-48 CrossRef
    76. Leeman WP (1982) Geology of the Magic Reservoir area, Snake River Plain. In: Bonnichsen B, Breckenridge RM (eds) Cenozoic geology of Idaho. Idaho Bur Mines Geol Bull 26:369-76
    77. Leeman WP, Menzies MA, Matty DJ, Embree GF (1985) Strontium, neodymium and lead isotopic compositions of deep crustal xenoliths from the Snake River plain: evidence for Archean basement. Earth Planet Sci Lett 75:354-68 CrossRef
    78. Leeman WP, Annen C, Dufek J (2008) Snake River Plain–Yellowstone silicic volcanism: implications for magma genesis and magma fluxes. Geol Soc Lond Spec Publ 304:235-59. doi:10.1144/SP304.12 CrossRef
    79. Leeman WP, Schutt DL, Hughes SS (2009) Thermal structure beneath the Snake River Plain: implications for the Yellowstone hotspot. J Volcanol Geotherm Res 188(1-):57-7. doi:10.1016/j.jvolgeores.2009.01.034 CrossRef
    80. Lipman PW (1976) Caldera collapse breccias in the western San Juan Mountains, Colorado. Geol Soc Am Bull 87:1397-410 CrossRef
    81. Lipman PW (1997) Subsidence of ash-flow calderas: relation to caldera size and magma-chamber geometry. Bull Volcanol 59:198-18 CrossRef
    82. Liu L, Stegman DR (2012) Origin of Columbia River flood basalt controlled by propagating rupture of the Farallon slab. Nature 482:386-89. doi:10.1038/nature10749 CrossRef
    83. Long MD, Till CB, Druken KA, Carlson RW, Wagner LS, Fouch MJ, James DE, Grove TL, Schmerr N, Kincaid C (2012) Mantle dynamics beneath the Pacific Northwest and the generation of voluminous back-arc volcanism. Geochem Geophys Geosyst 13:Q0AN01. doi:10.1029/2012GC004189 CrossRef
    84. Lowenstern JB, Hurwitz SH (2008) Monitoring a supervolcano in repose: heat and volatile flux at the Yellowstone caldera. Elements 4:35-0 CrossRef
    85. Malde HE, Powers HA (1962) Upper Cenozoic stratigraphy of western Snake River Plain, Idaho. Geol Soc Am Bull 73:1197-220 CrossRef
    86. Manea VC, Manea M, Leeman WP, Schutt DL (2009) The influence of plume head–lithosphere interaction on magmatism associated with the Yellowstone hotspot track. J Volcanol Geotherm Res 188(1-):68-5. doi:10.1016/j.jvolgeores.2008.12.012 CrossRef
    87. McCurry M, Rodgers DW (2009) Mass transfer along the Yellowstone hotspot track I: petrologic constraints on the volume of mantle-derived magma. J Volcanol Geotherm Res 188:86-8 CrossRef
    88. McDonough WC, Sun S-S (1995) The composition of the Earth. Chem Geol 120(3-):223-53 CrossRef
    89. Morgan LA, McIntosh WC (2005) Timing and development of the Heise volcanic field, Snake River Plain, Idaho, western USA. Geol Soc Am Bull 117:288-06. doi:10.1130/B25519.1 CrossRef
    90. Nash BP, Perkins ME (2012) Neogene fallout tuffs from the Yellowstone hotspot in the Columbia plateau region, Oregon, Washington and Idaho, USA. PLoS One 7(10):e44205 CrossRef
    91. Nash BP, Perkins ME, Christensen JN, Lee DC, Halliday AN (2006) The Yellowstone hotspot in space and time: Nd and Hf isotopes in silicic magmas. Earth Plan Sci Lett 247:143-56 CrossRef
    92. Obrebski M, Allen RM, Xue M, Hung S (2010) Slab–plume interaction beneath the Pacific Northwest. Geophys Res Lett 37, L14305. doi:10.1029/2010GL043489 CrossRef
    93. Perkins ME, Nash BP (2002) Explosive silicic volcanism of the Yellowstone hotspot: the ash fall tuff record. Geol Soc Am Bull 114:367-81 CrossRef
    94. Perkins ME, Nash WP, Brown FH, Fleck RJ (1995) Fallout tuffs of Trapper Creek Idaho—a record of Miocene explosive volcanism in the Snake River Plain volcanic province. Geol Soc Am Bull 107:1484-506 CrossRef
    95. Perkins ME, Williams SK, Brown FH, Nash WP, McIntosh W (1998) Sequence, age, and source of silicic fallout tuffs in middle to late Miocene basins of the northern Basin and Range Province. Geol Soc Am Bull 110:344-60 CrossRef
    96. Perry FV, DePaolo DJ, Baldridge WS (1993) Neodymium isotopic evidence for decreasing crustal contributions to Cenozoic ignimbrites of the western United States: implications for the thermal evolution of the Cordilleran crust. Geol Soc Am Bull 105:872-82 CrossRef
    97. Pierce KL, Morgan LA (1992) The track of the Yellowstone hotspot: volcanism, faulting and uplift. In: Link PK, Kuntz MA, Platt LB (eds) Regional geology of eastern Idaho and western Wyoming. Geol Soc Am Mem 179:1-3
    98. Ramos FC, Wolff JA, Tollstrup DL (2005) Sr isotope disequilibrium in Columbia River flood basalts: evidence for rapid, shallow-level, open-system processes. Geology 33:457-60 CrossRef
    99. Reidel SP, Camp VE, Tolan TL, Martin BS (2013) The Columbia River flood basalt province: stratigraphy, areal extent, volume, and physical volcanology. In: Reidel SP, Camp VE, Ross ME, Wolff JA, Martin BS, Tolan TL, Wells RE (eds) The Columbia River flood basalt province: geological society of America special paper 497, pp 1-3. doi:10.1130/2013.2497(01)
    100. Rodgers DW, McCurry M (2009) Mass transfer along the Yellowstone hotspot track II: kinematic constraints on the volume of mantle-derived magma. J Volcanol Geotherm Res 188(1-):99-07 CrossRef
    101. Rose WI, Riley CM, Darteville S (2003) Sizes and shapes of 10 Ma distal fall pyroclasts in the Ogallala Group, Nebraska. J Geol 111:115-24 CrossRef
    102. Schmandt B, Dueker K, Humphreys E, Hansen S (2012) Hot mantle upwelling across the 660 beneath Yellowstone. Earth Plan Sci Lett 331-32:224-36 CrossRef
    103. Schutt DL, Dueker K, Yuan H (2008) Crust and upper mantle velocity structure of the Yellowstone hot spot and surroundings. J Geophys Res 113, B03310. doi:10.1029/2007JB005109 CrossRef
    104. Shervais JW, Hanan BB (2008) Lithospheric topography, tilted plumes, and the track of the Snake River–Yellowstone hot spot. Tectonics 27:TC5004 CrossRef
    105. Smith RL (1979) Ash-flow magmatism. In: Chapin CE, & Elston WE (eds) Ash-flow tuffs. Geological Society of America Special Paper 180, 5-28
    106. Smith AD (1992) Back-arc convection model for Columbia River basalt genesis. Tectonophysics 207:269-85 CrossRef
    107. Sparks RSJ, Francis PW, Hamer RD, Pankhurst RJ, O’Callaghan LO, Thorpe RS, Page R (1985) Ignimbrites of the Cerro Galan caldera, NW Argentina. J Volcanol Geotherm Res 24:205-48 CrossRef
    108. Swanson DA, Wright TL, Hooper PR, Bentley RD, (1979) Revisions in stratigraphic nomenclature of the Columbia River Basalt Group. US Geol Surv Bull1457-G, 59 p
    109. Swisher CC, Ach JA, Hart WK (1990) Laser fusion 40Ar/39Ar dating of the type Steens Mountain Basalt, southeastern Oregon and the age of the Steens geomagnetic polarity transition. Eos (Transactions, American Geophysical Union), v. 71, Fall Meeting Supplement, p. 1296
    110. Taylor HP (1968) The oxygen isotope geochemistry of igneous rocks. Contrib Mineral Petrol 19:1-1 CrossRef
    111. Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell Science, Oxford
    112. Wagner LS, Forsyth DW, Fouch MJ, James DE (2010) Detailed three-dimensional shear wave velocity structure of the northwestern United States from Rayleigh wave tomography. Earth Plan Sci Lett 299:273-84. doi:10.1016/j.epsl.2010.09.005 CrossRef
    113. Watts KE, Leeman WP, Bindeman IN, Larson PB (2010) Supereruptions of the Snake River Plain: two-stage derivation of low-18O rhyolites from normal-18O crust as constrained by Archean xenoliths. Geology 38:503-06 CrossRef
    114. Watts KE, Bindeman IN, Schmitt A (2011) Large-volume rhyolite genesis in caldera complexes of the Snake River Plain: insights from the Kilgore Tuff of the Heise volcanic field, Idaho, with comparison to Yellowstone and Bruneau–Jarbidge rhyolites. J Petrol 52:857-90 CrossRef
    115. Williams PL, Mytton JW, Covington HR, (1999) Geologic map of the Stricker 1 quadrangle, Cassia, Twin Falls, and Jerome Counties, Idaho. US Geol Surv Misc Inv Series Map I-2078 1:48,000
    116. Wilson CJN, Blake S, Charlier BLA, Sutton AN (2006) The 26.5 ka Oruanui Eruption, Taupo Volcano, New Zealand: development, characteristics and evacuation of a large rhyolitic magma body. J Petrol 47(1):35-9 CrossRef
    117. Wolff JA, Ramos FC, Hart GL, Patterson JD, Brandon AD (2008) Columbia River flood basalts from a centralized crustal magmatic system. Nat Geosci 1:177-80. doi:10.1038/ngeo124 CrossRef
    118. Wolff JA, Ellis BS, Ramos FC (2011) Strontium isotopes and magma dynamics: insights from high-temperature rhyolites. Geology 39:931-34 CrossRef
    119. Wright KE, McCurry M, Hughes SS (2002) Petrology and geochemistry of the Miocene tuff of McMullen Creek, central Snake River Plain. In: Bonnichsen B, McCurry M, White CM (eds) Tectonic and magmatic evolution of the Snake River Plain volcanic province. Idaho Geol Surv Bull 30:177-94
    120. Yuan H, Dueker K (2005) P wave tomogram of the Yellowstone plume. Geophys Res Lett 32, L07304. doi:10.1029/2004GL022056 CrossRef
  • 作者单位:B. S. Ellis (1)
    J. A. Wolff (2)
    S. Boroughs (2)
    D. F. Mark (3)
    W. A. Starkel (2)
    B. Bonnichsen (4)

    1. Institute for Geochemistry and Petrology, ETH Zurich, NW Clausiusstrasse 25, 8092, Zurich, Switzerland
    2. School of the Environment, Washington State University, Pullman, WA, 99164, USA
    3. NERC Argon Isotope Facility, Scottish Universities Environmental Research Centre (SUERC), Rankine Avenue, East Kilbride, Scotland, G75 0QF, UK
    4. 927 East 7th Street, Moscow, ID, USA
  • ISSN:1432-0819
文摘
The central Snake River Plain (CSRP) of southern Idaho and northern Nevada, USA, forms part of the Columbia River–Yellowstone large igneous province. Volcanic rocks of the province are compositionally bimodal (basalt–rhyolite), and the rhyolites produce a broadly time-transgressive record of a hotspot which is currently located under Yellowstone. Snake River Plain rhyolites represent hot (>850?°C), dry magmas and have field characteristics consistent with high emplacement temperatures. Individual ignimbrite sheets reach 1,000?km3 and exhibit little to no compositional zonation on a large scale but reveal considerable complexity on a crystal scale, particularly with regard to pyroxene compositions. Multiple pyroxene compositions may exist in a single ignimbrite which, along with multiple glass compositions in widely dispersed fallout tephra, suggests complex storage of rhyolite prior to eruption. Unlike most igneous rocks, the mineral cargo of the CSRP rhyolites exhibits little isotopic variability, with unimodal 87Sr/86Sr values returned from plagioclase grains inferred to represent the combination of strong crystal–melt coupling and rapid diffusional re-equilibriation. All the rhyolites within the CSRP have a characteristic low-δ 18O signature; with >20,000?km3 of rhyolite exhibiting this depletion, the CSRP represents the largest low-δ 18O province on Earth. The low-18O nature of the rhyolites requires assimilation of hydrothermally altered materials which may be from altered Eocene batholithic rocks or from down-dropped intra-caldera tuffs. The wide range of crustal assimilants, with highly variable radiogenic isotope characteristics, available in the CSRP is permissive of a variety of petrogenetic models based on radiogenic isotopic data.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700