A mitochondrial redox oxygen sensor in the pulmonary vasculature and ductus arteriosus
详细信息    查看全文
  • 作者:Kimberly J. Dunham-Snary ; Zhigang G. Hong…
  • 关键词:Hypoxic pulmonary vasoconstriction ; Ductus arteriosus ; Mitochondria ; Oxygen ; sensitive potassium channels ; Pulmonary arterial hypertension ; Patent ductus arteriosus
  • 刊名:Pfl¨¹gers Archiv - European Journal of Physiology
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:468
  • 期:1
  • 页码:43-58
  • 全文大小:5,471 KB
  • 参考文献:1.Aaronson PI, Robertson TP, Knock GA, Becker S, Lewis TH, Snetkov V, Ward JP (2006) Hypoxic pulmonary vasoconstriction: mechanisms and controversies. J Physiol 570:53–8. doi:10.​1113/​jphysiol.​2005.​098855 PubMed PubMedCentral CrossRef
    2.Alzamora-Castro V, Battilana G, Abugattas R, Sialer S (1960) Patent ductus arteriosus and high altitude. Am J Cardiol 5:761–3PubMed CrossRef
    3.Archer SL (2013) Mitochondrial dynamics—mitochondrial fission and fusion in human diseases. N Engl J Med 369:2236–51. doi:10.​1056/​NEJMra1215233 PubMed CrossRef
    4.Archer SL, Gomberg-Maitland M, Maitland ML, Rich S, Garcia JG, Weir EK (2008) Mitochondrial metabolism, redox signaling, and fusion: a mitochondria-ROS-HIF-1alpha-Kv1.5 O2-sensing pathway at the intersection of pulmonary hypertension and cancer. Am J Physiol Heart Circ Physiol 294:H570–8. doi:10.​1152/​ajpheart.​01324.​2007 PubMed CrossRef
    5.Archer SL, Huang J, Henry T, Peterson D, Weir EK (1993) A redox-based O2 sensor in rat pulmonary vasculature. Circ Res 73:1100–12PubMed CrossRef
    6.Archer SL, Huang JM, Reeve HL, Hampl V, Tolarova S, Michelakis E, Weir EK (1996) Differential distribution of electrophysiologically distinct myocytes in conduit and resistance arteries determines their response to nitric oxide and hypoxia. Circ Res 78:431–42PubMed CrossRef
    7.Archer SL, London B, Hampl V, Wu X, Nsair A, Puttagunta L, Hashimoto K, Waite RE, Michelakis ED (2001) Impairment of hypoxic pulmonary vasoconstriction in mice lacking the voltage-gated potassium channel Kv1.5. FASEB J 15:1801–3PubMed
    8.Archer SL, Nelson DP, Weir EK (1985) Simultaneous measurement of O2 radicals and pulmonary vascular reactivity in rat lung. J Appl Physiol 67:1903–11
    9.Archer SL, Nelson DP, Weir EK (1985) Detection of activated O2 species in vitro and in rat lungs by chemiluminescence. J Appl Physiol 67:1912–21
    10.Archer SL, Weir EK, Wilkins MR (2010) Basic science of pulmonary arterial hypertension for clinicians: new concepts and experimental therapies. Circulation 121:2045–66. doi:10.​1161/​CIRCULATIONAHA.​108.​847707 PubMed PubMedCentral CrossRef
    11.Archer SL, Will JA, Weir EK (1986) Redox status in the control of pulmonary vascular tone. Herz 11:127–41PubMed
    12.Archer SL, Wu XC, Thebaud B, Nsair A, Bonnet S, Tyrrell B, McMurtry MS, Hashimoto K, Harry G, Michelakis ED (2004) Preferential expression and function of voltage-gated, O2-sensitive K+ channels in resistance pulmonary arteries explains regional heterogeneity in hypoxic pulmonary vasoconstriction: ionic diversity in smooth muscle cells. Circ Res 95:308–18. doi:10.​1161/​01.​RES.​0000137173.​42723.​fb PubMed CrossRef
    13.Baraka AS, Taha SK, Yaacoub CI (2003) Alarming hypoxemia during one-lung ventilation in a patient with respiratory bronchiolitis-associated interstitial lung disease. Can J Anaesth 50:411–4. doi:10.​1007/​BF03021041 PubMed CrossRef
    14.Becker LB, vanden Hoek TL, Shao ZH, Li CQ, Schumacker PT (1999) Generation of superoxide in cardiomyocytes during ischemia before reperfusion. Am J Physiol 277:H2240–6PubMed
    15.Bonnet S, Michelakis ED, Porter CJ, Andrade-Navarro MA, Thebaud B, Bonnet S, Haromy A, Harry G, Moudgil R, McMurtry MS, Weir EK, Archer SL (2006) An abnormal mitochondrial-hypoxia inducible factor-1alpha-Kv channel pathway disrupts oxygen sensing and triggers pulmonary arterial hypertension in fawn hooded rats: similarities to human pulmonary arterial hypertension. Circulation 113:2630–41. doi:10.​1161/​CIRCULATIONAHA.​105.​609008 PubMed CrossRef
    16.Bradford JR, Dean HP (1894) The pulmonary circulation1. J Physiol 16:34–158. doi:10.​1113/​jphysiol.​1894.​sp000493 PubMed PubMedCentral CrossRef
    17.Brunner M, Kodirov SA, Mitchell GF, Buckett PD, Shibata K, Folco EJ, Baker L, Salama G, Chan DP, Zhou J, Koren G (2003) In vivo gene transfer of Kv1.5 normalizes action potential duration and shortens QT interval in mice with long QT phenotype. Am J Physiol Heart Circ Physiol 285:H194–203. doi:10.​1152/​ajpheart.​00971.​2002 PubMed CrossRef
    18.Chandel NS, McClintock DS, Feliciano CE, Wood TM, Melendez JA, Rodriguez AM, Schumacker PT (2000) Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing. J Biol Chem 275:25130–8. doi:10.​1074/​jbc.​M001914200 PubMed CrossRef
    19.Coceani F, Armstrong C, Kelsey L (1989) Endothelin is a potent constrictor of the lamb ductus arteriosus. Can J Physiol Pharmacol 67:902–904. doi:10.​1139/​y89-141 PubMed CrossRef
    20.Coceani F, Kelsey L, Seidlitz E (1992) Evidence for an effector role of endothelin in closure of the ductus arteriosus at birth. Can J Physiol Pharmacol 70:1061–4PubMed CrossRef
    21.Duprat F, Guillemare E, Romey G, Fink M, Lesage F, Lazdunski M, Honore E (1995) Susceptibility of cloned K+ channels to reactive oxygen species. Proc Natl Acad Sci U S A 92:11796–800PubMed PubMedCentral CrossRef
    22.Duprat F, Lesage F, Fink M, Reyes R, Heurteaux C, Lazdunski M (1997) TASK, a human background K+ channel to sense external pH variations near physiological pH. EMBO J 16:5464–71. doi:10.​1093/​emboj/​16.​17.​5464 PubMed PubMedCentral CrossRef
    23.Elton TS, Oparil S, Taylor GR, Hicks PH, Yang R, Jin H, Chen Y (1992) Normobaric hypoxia stimulates endothelin-1 gene expression in the rat. Am J Physiol-Regulatory, Integrative Comp Physiol 263:R1260–R1264
    24.Euler US, Liljestrand G (1946) Observations on the pulmonary arterial blood pressure in the cat. Acta Physiol Scand 12:301–320. doi:10.​1111/​j.​1748-1716.​1946.​tb00389.​x CrossRef
    25.Fay FS (1971) Guinea pig ductus arteriosus. I. Cellular and metabolic basis for oxygen sensitivity. Am J Physiol 221:470–9PubMed
    26.Feng J, Wible B, Li GR, Wang Z, Nattel S (1997) Antisense oligodeoxynucleotides directed against Kv1.5 mRNA specifically inhibit ultrarapid delayed rectifier K+ current in cultured adult human atrial myocytes. Circ Res 80:572–9PubMed CrossRef
    27.Franco-Obregon A, Lopez-Barneo J (1996) Differential oxygen sensitivity of calcium channels in rabbit smooth muscle cells of conduit and resistance pulmonary arteries. J Physiol 491(Pt 2):511–8PubMed PubMedCentral CrossRef
    28.Franco-Obregón A, Urena J, López-Barneo J (1995) Oxygen-sensitive calcium channels in vascular smooth muscle and their possible role in hypoxic arterial relaxation. Proc Natl Acad Sci 92:4715–4719PubMed PubMedCentral CrossRef
    29.Gardener MJ, Johnson IT, Burnham MP, Edwards G, Heagerty AM, Weston AH (2004) Functional evidence of a role for two-pore domain potassium channels in rat mesenteric and pulmonary arteries. Br J Pharmacol 142:192–202. doi:10.​1038/​sj.​bjp.​0705691 PubMed PubMedCentral CrossRef
    30.Graham D, Huynh NN, Hamilton CA, Beattie E, Smith RA, Cocheme HM, Murphy MP, Dominiczak AF (2009) Mitochondria-targeted antioxidant MitoQ10 improves endothelial function and attenuates cardiac hypertrophy. Hypertension 54:322–8. doi:10.​1161/​HYPERTENSIONAHA.​109.​130351 PubMed CrossRef
    31.Gupte SA, Wolin MS (2008) Oxidant and redox signaling in vascular oxygen sensing: implications for systemic and pulmonary hypertension. Antioxid Redox Signal 10:1137–52. doi:10.​1089/​ars.​2007.​1995 PubMed PubMedCentral CrossRef
    32.Gurney AM, Osipenko ON, MacMillan D, McFarlane KM, Tate RJ, Kempsill FE (2003) Two-pore domain K channel, TASK-1, in pulmonary artery smooth muscle cells. Circ Res 93:957–64. doi:10.​1161/​01.​RES.​0000099883.​68414.​61 PubMed CrossRef
    33.Guzy RD, Hoyos B, Robin E, Chen H, Liu L, Mansfield KD, Simon MC, Hammerling U, Schumacker PT (2005) Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab 1:401–8. doi:10.​1016/​j.​cmet.​2005.​05.​001 PubMed CrossRef
    34.Hamrick SE, Hansmann G (2010) Patent ductus arteriosus of the preterm infant. Pediatrics 125:1020–30. doi:10.​1542/​peds.​2009-3506 PubMed CrossRef
    35.Harder DR, Madden JA, Dawson C (1985) Hypoxic induction of Ca2 + −dependent action potentials in small pulmonary arteries of the cat. J Appl Physiol 59:1389–93PubMed
    36.Hasunuma K, Rodman DM, McMurtry IF (1991) Effects of K+ channel blockers on vascular tone in the perfused rat lung. Am Rev Respir Dis 144:884–7. doi:10.​1164/​ajrccm/​144.​4.​884 PubMed CrossRef
    37.Henry TD, Archer SL, Nelson D, Weir EK, From A (1990) Enhanced chemiluminescence as a measure of oxygen-derived free radical generation during ischemia and reperfusion. Circ Res 67:1453–1461PubMed CrossRef
    38.Henry TD, Archer SL, Nelson D, Weir EK, From AH (1993) Postischemic oxygen radical production varies with duration of ischemia. Am J Physiol 264:H1478–84PubMed
    39.Hoffman JI, Kaplan S (2002) The incidence of congenital heart disease. J Am Coll Cardiol 39:1890–900PubMed CrossRef
    40.Hong Z, Kutty S, Toth PT, Marsboom G, Hammel JM, Chamberlain C, Ryan JJ, Zhang HJ, Sharp WW, Morrow E, Trivedi K, Weir EK, Archer SL (2013) Role of dynamin-related protein 1 (Drp1)-mediated mitochondrial fission in oxygen sensing and constriction of the ductus arteriosus. Circ Res 112:802–15. doi:10.​1161/​CIRCRESAHA.​111.​300285 PubMed PubMedCentral CrossRef
    41.Hulme JT, Coppock EA, Felipe A, Martens JR, Tamkun MM (1999) Oxygen sensitivity of cloned voltage-gated K(+) channels expressed in the pulmonary vasculature. Circ Res 85:489–97PubMed CrossRef
    42.Jensen KS, Micco AJ, Czartolomna J, Latham L, Voelkel NF (1985) Rapid onset of hypoxic vasoconstriction in isolated lungs. J Appl Physiol 72:2018–23
    43.Kalogeris T, Bao Y, Korthuis RJ (2014) Mitochondrial reactive oxygen species: a double edged sword in ischemia/reperfusion vs preconditioning. Redox Biol 2:702–14. doi:10.​1016/​j.​redox.​2014.​05.​006 PubMed PubMedCentral CrossRef
    44.Kim SJ, Widenmaier SB, Choi WS, Nian C, Ao Z, Warnock G, McIntosh CH (2012) Pancreatic beta-cell prosurvival effects of the incretin hormones involve post-translational modification of Kv2.1 delayed rectifier channels. Cell Death Differ 19:333–44. doi:10.​1038/​cdd.​2011.​102 PubMed PubMedCentral CrossRef
    45.Kitterman JA, Edmunds LH Jr, Gregory GA, Heymann MA, Tooley WH, Rudolph AM (1972) Patent ducts arteriosus in premature infants. Incidence, relation to pulmonary disease and management. N Engl J Med 287:473–7. doi:10.​1056/​NEJM197209072871​001 PubMed CrossRef
    46.Li H, Elton T, Chen Y, Oparil S (1994) Increased endothelin receptor gene expression in hypoxic rat lung. Am J Physiol-Lung Cell Mol Physiol 266:L553–L560
    47.Lopez-Barneo J, Lopez-Lopez JR, Urena J, Gonzalez C (1988) Chemotransduction in the carotid body: K+ current modulated by PO2 in type I chemoreceptor cells. Science 241:580–2PubMed CrossRef
    48.Ma L, Roman-Campos D, Austin ED, Eyries M, Sampson KS, Soubrier F, Germain M, Tregouet DA, Borczuk A, Rosenzweig EB, Girerd B, Montani D, Humbert M, Loyd JE, Kass RS, Chung WK (2013) A novel channelopathy in pulmonary arterial hypertension. N Engl J Med 369:351–61. doi:10.​1056/​NEJMoa1211097 PubMed PubMedCentral CrossRef
    49.MacDonald PE, Wheeler MB (2003) Voltage-dependent K(+) channels in pancreatic beta cells: role, regulation and potential as therapeutic targets. Diabetologia 46:1046–62. doi:10.​1007/​s00125-003-1159-8 PubMed CrossRef
    50.Madden JA, Dawson CA, Harder DR (1985) Hypoxia-induced activation in small isolated pulmonary arteries from the cat. J Appl Physiol (1985) 59:113–8
    51.Madden JA, Vadula MS, Kurup VP (1992) Effects of hypoxia and other vasoactive agents on pulmonary and cerebral artery smooth muscle cells. Am J Physiol 263:L384–93PubMed
    52.Marsboom G, Toth PT, Ryan JJ, Hong Z, Wu X, Fang YH, Thenappan T, Piao L, Zhang HJ, Pogoriler J, Chen Y, Morrow E, Weir EK, Rehman J, Archer SL (2012) Dynamin-related protein 1-mediated mitochondrial mitotic fission permits hyperproliferation of vascular smooth muscle cells and offers a novel therapeutic target in pulmonary hypertension. Circ Res 110:1484–97. doi:10.​1161/​CIRCRESAHA.​111.​263848 PubMed PubMedCentral CrossRef
    53.Mays DJ, Foose JM, Philipson LH, Tamkun MM (1995) Localization of the Kv1.5 K+ channel protein in explanted cardiac tissue. J Clin Invest 96:282–92. doi:10.​1172/​JCI118032 PubMed PubMedCentral CrossRef
    54.McDonnell TJ, Westcott J, Czartolomna J, Voelkel NF (1990) Role of peptidoleukotrienes in hypoxic pulmonary vasoconstriction in rats. Am J Physiol-Heart Circ Physiol 259:H751–H758
    55.McManus MJ, Murphy MP, Franklin JL (2011) The mitochondria-targeted antioxidant MitoQ prevents loss of spatial memory retention and early neuropathology in a transgenic mouse model of Alzheimer’s disease. J Neurosci 31:15703–15. doi:10.​1523/​JNEUROSCI.​0552-11.​2011 PubMed PubMedCentral CrossRef
    56.McMurphy DM, Heymann MA, Rudolph AM, Melmon KL (1972) Developmental changes in constriction of the ductus arteriosus: responses to oxygen and vasoactive agents in the isolated ductus arteriosus of the fetal lamb. Pediatr Res 6:231–8. doi:10.​1203/​00006450-197204000-00004 PubMed CrossRef
    57.McMurtry IF (1985) BAY K 8644 potentiates and A23187 inhibits hypoxic vasoconstriction in rat lungs. Am J Physiol 249:H741–6PubMed
    58.McMurtry IF, Davidson AB, Reeves JT, Grover RF (1976) Inhibition of hypoxic pulmonary vasoconstriction by calcium antagonists in isolated rat lungs. Circ Res 38:99–104PubMed CrossRef
    59.McMurtry IF, Petrun MD, Reeves JT (1978) Lungs from chronically hypoxic rats have decreased pressor response to acute hypoxia. Am J Physiol 235:H104–9PubMed
    60.Mercer JR, Yu E, Figg N, Cheng KK, Prime TA, Griffin JL, Masoodi M, Vidal-Puig A, Murphy MP, Bennett MR (2012) The mitochondria-targeted antioxidant MitoQ decreases features of the metabolic syndrome in ATM+/−/ApoE−/− mice. Free Radic Biol Med 52:841–9. doi:10.​1016/​j.​freeradbiomed.​2011.​11.​026 PubMed CrossRef
    61.Michelakis ED, Hampl V, Nsair A, Wu X, Harry G, Haromy A, Gurtu R, Archer SL (2002) Diversity in mitochondrial function explains differences in vascular oxygen sensing. Circ Res 90:1307–15PubMed CrossRef
    62.Michelakis E, Rebeyka I, Bateson J, Olley P, Puttagunta L, Archer S (2000) Voltage-gated potassium channels in human ductus arteriosus. Lancet 356:134–7. doi:10.​1016/​S0140-6736(00)02452-1 PubMed CrossRef
    63.Michelakis ED, Rebeyka I, Wu X, Nsair A, Thebaud B, Hashimoto K, Dyck JR, Haromy A, Harry G, Barr A, Archer SL (2002) O2 sensing in the human ductus arteriosus: regulation of voltage-gated K+ channels in smooth muscle cells by a mitochondrial redox sensor. Circ Res 91:478–86PubMed CrossRef
    64.Michelakis ED, Thebaud B, Weir EK, Archer SL (2004) Hypoxic pulmonary vasoconstriction: redox regulation of O2-sensitive K+ channels by a mitochondrial O2-sensor in resistance artery smooth muscle cells. J Mol Cell Cardiol 37:1119–36. doi:10.​1016/​j.​yjmcc.​2004.​09.​007 PubMed
    65.Mojet MH, Mills E, Duchen MR (1997) Hypoxia-induced catecholamine secretion in isolated newborn rat adrenal chromaffin cells is mimicked by inhibition of mitochondrial respiration. J Physiol 504:175–189. doi:10.​1111/​j.​1469-7793.​1997.​175bf.​x PubMed PubMedCentral CrossRef
    66.Moudgil R, Michelakis ED, Archer SL (1985) Hypoxic pulmonary vasoconstriction. J Appl Physiol 98:390–403. doi:10.​1152/​japplphysiol.​00733.​2004 CrossRef
    67.Moudgil R, Michelakis ED, Archer SL (2006) The role of k + channels in determining pulmonary vascular tone, oxygen sensing, cell proliferation, and apoptosis: implications in hypoxic pulmonary vasoconstriction and pulmonary arterial hypertension. Microcirculation 13:615–32. doi:10.​1080/​1073968060093022​2 PubMed CrossRef
    68.Nagendran J, Stewart K, Hoskinson M, Archer SL (2006) An anesthesiologist’s guide to hypoxic pulmonary vasoconstriction: implications for managing single-lung anesthesia and atelectasis. Curr Opin Anaesthesiol 19:34–43. doi:10.​1097/​01.​aco.​0000192777.​09527.​9e PubMed CrossRef
    69.Osipenko ON, Tate RJ, Gurney AM (2000) Potential role for kv3.1b channels as oxygen sensors. Circ Res 86:534–40PubMed CrossRef
    70.Paky A, Michael JR, Burke-Wolin TM, Wolin MS, Gurtner GH (1983) Endogenous production of superoxide by rabbit lungs: effects of hypoxia or metabolic inhibitors. J Appl Physiol (1985) 74:2868–74
    71.Park SW, Noh HJ, Sung DJ, Kim JG, Kim JM, Ryu SY, Kang K, Kim B, Bae YM, Cho H (2015) Hydrogen peroxide induces vasorelaxation by enhancing 4-aminopyridine-sensitive Kv currents through S-glutathionylation. Pflugers Arch 467:285–97. doi:10.​1007/​s00424-014-1513-3 PubMed PubMedCentral CrossRef
    72.Peers C (1991) Effects of doxapram on ionic currents recorded in isolated type I cells of the neonatal rat carotid body. Brain Res 568:116–22PubMed CrossRef
    73.Platoshyn O, Yu Y, Ko EA, Remillard CV, Yuan JX (2007) Heterogeneity of hypoxia-mediated decrease in I(K(V)) and increase in [Ca2+](cyt) in pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 293:L402–16. doi:10.​1152/​ajplung.​00391.​2006 PubMed CrossRef
    74.Post JM, Hume JR, Archer SL, Weir EK (1992) Direct role for potassium channel inhibition in hypoxic pulmonary vasoconstriction. Am J Physiol 262:C882–90PubMed
    75.Pozeg ZI, Michelakis ED, McMurtry MS, Thebaud B, Wu XC, Dyck JR, Hashimoto K, Wang S, Moudgil R, Harry G, Sultanian R, Koshal A, Archer SL (2003) In vivo gene transfer of the O2-sensitive potassium channel Kv1.5 reduces pulmonary hypertension and restores hypoxic pulmonary vasoconstriction in chronically hypoxic rats. Circulation 107:2037–44. doi:10.​1161/​01.​CIR.​0000062688.​76508.​B3 PubMed CrossRef
    76.Reeve HL, Michelakis E, Nelson DP, Weir EK, Archer SL (2001) Alterations in a redox oxygen sensing mechanism in chronic hypoxia. J Appl Physiol (1985) 90:2249–56
    77.Reeve HL, Tolarova S, Nelson DP, Archer S, Weir EK (2001) Redox control of oxygen sensing in the rabbit ductus arteriosus. J Physiol 533:253–61PubMed PubMedCentral CrossRef
    78.Reeve HL, Weir EK, Nelson DP, Peterson DA, Archer SL (1995) Opposing effects of oxidants and antioxidants on K+ channel activity and tone in rat vascular tissue. Exp Physiol 80:825–34PubMed CrossRef
    79.Robertson TP, Hague D, Aaronson PI, Ward JP (2000) Voltage-independent calcium entry in hypoxic pulmonary vasoconstriction of intrapulmonary arteries of the rat. J Physiol 525(Pt 3):669–80PubMed PubMedCentral CrossRef
    80.Rounds S, McMurtry IF (1981) Inhibitors of oxidative ATP production cause transient vasoconstriction and block subsequent pressor responses in rat lungs. Circ Res 48:393–400PubMed CrossRef
    81.Roy ML, Saal D, Perney T, Sontheimer H, Waxman SG, Kaczmarek LK (1996) Manipulation of the delayed rectifier Kv1.5 potassium channel in glial cells by antisense oligodeoxynucleotides. Glia 18:177–84. doi:10.​1002/​(SICI)1098-1136(199611)18:​3<177:​:​AID-GLIA2>3.​0.​CO;2-X PubMed CrossRef
    82.Shirai M, Ninomiya I, Sada K (1991) Constrictor response of small pulmonary arteries to acute pulmonary hypertension during left atrial pressure elevation. Jpn J Physiol 41:129–42PubMed CrossRef
    83.Skinner J (2001) Diagnosis of patent ductus arteriosus. Semin Neonatol 6:49–61. doi:10.​1053/​siny.​2000.​0037 PubMed CrossRef
    84.Smith RA, Murphy MP (2010) Animal and human studies with the mitochondria-targeted antioxidant MitoQ. Ann N Y Acad Sci 1201:96–103. doi:10.​1111/​j.​1749-6632.​2010.​05627.​x PubMed CrossRef
    85.Thebaud B, Michelakis ED, Wu XC, Moudgil R, Kuzyk M, Dyck JR, Harry G, Hashimoto K, Haromy A, Rebeyka I, Archer SL (2004) Oxygen-sensitive Kv channel gene transfer confers oxygen responsiveness to preterm rabbit and remodeled human ductus arteriosus: implications for infants with patent ductus arteriosus. Circulation 110:1372–9. doi:10.​1161/​01.​CIR.​0000141292.​28616.​65 PubMed CrossRef
    86.Tolins M, Weir EK, Chesler E, Nelson DP, From AH (1986) Pulmonary vascular tone is increased by a voltage-dependent calcium channel potentiator. J Appl Physiol (1985) 60:942–8
    87.Tristani-Firouzi M, Reeve HL, Tolarova S, Weir EK, Archer SL (1996) Oxygen-induced constriction of rabbit ductus arteriosus occurs via inhibition of a 4-aminopyridine-, voltage-sensitive potassium channel. J Clin Invest 98:1959–65. doi:10.​1172/​JCI118999 PubMed PubMedCentral CrossRef
    88.Ward JP (2006) Point: hypoxic pulmonary vasoconstriction is mediated by increased production of reactive oxygen species. J Appl Physiol (1985) 101:993–5. doi:10.​1152/​japplphysiol.​00480.​2006 , discussion 999 CrossRef
    89.Waypa GB, Chandel NS, Schumacker PT (2001) Model for hypoxic pulmonary vasoconstriction involving mitochondrial oxygen sensing. Circ Res 88:1259–66PubMed CrossRef
    90.Waypa GB, Marks JD, Guzy RD, Mungai PT, Schriewer JM, Dokic D, Ball MK, Schumacker PT (2013) Superoxide generated at mitochondrial complex III triggers acute responses to hypoxia in the pulmonary circulation. Am J Respir Crit Care Med 187:424–32. doi:10.​1164/​rccm.​201207-1294OC PubMed PubMedCentral CrossRef
    91.Waypa GB, Marks JD, Guzy R, Mungai PT, Schriewer J, Dokic D, Schumacker PT (2010) Hypoxia triggers subcellular compartmental redox signaling in vascular smooth muscle cells. Circ Res 106:526–35. doi:10.​1161/​CIRCRESAHA.​109.​206334 PubMed PubMedCentral CrossRef
    92.Waypa GB, Marks JD, Mack MM, Boriboun C, Mungai PT, Schumacker PT (2002) Mitochondrial reactive oxygen species trigger calcium increases during hypoxia in pulmonary arterial myocytes. Circ Res 91:719–26PubMed CrossRef
    93.Weir EK, Archer SL (1995) The mechanism of acute hypoxic pulmonary vasoconstriction: the tale of two channels. FASEB J 9:183–9PubMed
    94.Weir EK, Archer SL (2006) Counterpoint: hypoxic pulmonary vasoconstriction is not mediated by increased production of reactive oxygen species. J Appl Physiol (1985) 101:995–8. doi:10.​1152/​japplphysiol.​00480a.​2006 , discussion 998 CrossRef
    95.Weir EK, Archer SL (2010) The role of redox changes in oxygen sensing. Respir Physiol Neurobiol 174:182–91. doi:10.​1016/​j.​resp.​2010.​08.​015 PubMed PubMedCentral CrossRef
    96.Weir EK, Lopez-Barneo J, Buckler KJ, Archer SL (2005) Acute oxygen-sensing mechanisms. N Engl J Med 353:2042–55. doi:10.​1056/​NEJMra050002 PubMed PubMedCentral CrossRef
    97.Weir EK, Reeve HL, Peterson DA, Michelakis ED, Nelson DP, Archer SL (1998) Pulmonary vasoconstriction, oxygen sensing, and the role of ion channels: Thomas A. Neff lecture. Chest 114:17S–22SPubMed CrossRef
    98.Wolin MS, Burke TM (1987) Hydrogen peroxide elicits activation of bovine pulmonary arterial soluble guanylate cyclase by a mechanism associated with its metabolism by catalase. Biochem Biophys Res Commun 143:20–5PubMed CrossRef
    99.Youngson C, Nurse C, Yeger H, Cutz E (1993) Oxygen sensing in airway chemoreceptors. Nature 365:153–5. doi:10.​1038/​365153a0 PubMed CrossRef
    100.Yu SP, Yeh CH, Sensi SL, Gwag BJ, Canzoniero LM, Farhangrazi ZS, Ying HS, Tian M, Dugan LL, Choi DW (1997) Mediation of neuronal apoptosis by enhancement of outward potassium current. Science 278:114–7PubMed CrossRef
    101.Yuan XJ, Tod ML, Rubin LJ, Blaustein MP (1990) Contrasting effects of hypoxia on tension in rat pulmonary and mesenteric arteries. Am J Physiol 259:H281–9PubMed
    102.Yuan XJ, Wang J, Juhaszova M, Gaine SP, Rubin LJ (1998) Attenuated K+ channel gene transcription in primary pulmonary hypertension. Lancet 351:726–7. doi:10.​1016/​S0140-6736(05)78495-6 PubMed CrossRef
  • 作者单位:Kimberly J. Dunham-Snary (1)
    Zhigang G. Hong (1)
    Ping Y. Xiong (1)
    Joseph C. Del Paggio (1)
    Julia E. Herr (1)
    Amer M. Johri (1)
    Stephen L. Archer (1)

    1. Department of Medicine, Queen’s University, Etherington Hall, Room 3041, 94 Stuart St, Kingston, ON, K7L 3N6, Canada
  • 刊物主题:Human Physiology;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1432-2013
文摘
The mammalian homeostatic oxygen sensing system (HOSS) initiates changes in vascular tone, respiration, and neurosecretion that optimize oxygen uptake and tissue oxygen delivery within seconds of detecting altered environmental or arterial PO2. The HOSS includes carotid body type 1 cells, adrenomedullary cells, neuroepithelial bodies, and smooth muscle cells (SMCs) in pulmonary arteries (PAs), ductus arteriosus (DA), and fetoplacental arteries. Hypoxic pulmonary vasoconstriction (HPV) optimizes ventilation–perfusion matching. In utero, HPV diverts placentally oxygenated blood from the non-ventilated lung through the DA. At birth, increased alveolar and arterial oxygen tension dilates the pulmonary vasculature and constricts the DA, respectively, thereby transitioning the newborn to an air-breathing organism. Though modulated by endothelial-derived relaxing and constricting factors, O2 sensing is intrinsic to PASMCs and DASMCs. Within the SMC’s dynamic mitochondrial network, changes in PO2 alter the reduction–oxidation state of redox couples (NAD+/NADH, NADP+/NADPH) and the production of reactive oxygen species, ROS (e.g., H2O2), by complexes I and III of the electron transport chain (ETC). ROS and redox couples regulate ion channels, transporters, and enzymes, changing intracellular calcium [Ca2+]i and calcium sensitivity and eliciting homeostatic responses to hypoxia. In PASMCs, hypoxia inhibits ROS production and reduces redox couples, thereby inhibiting O2-sensitive voltage-gated potassium (Kv) channels, depolarizing the plasma membrane, activating voltage-gated calcium channels (CaL), increasing [Ca2+]i, and causing vasoconstriction. In DASMCs, elevated PO2 causes mitochondrial fission, increasing ETC complex I activity and ROS production. The DASMC’s downstream response to elevated PO2 (Kv channel inhibition, CaL activation, increased [Ca2+]i, and rho kinase activation) is similar to the PASMC’s hypoxic response. Impaired O2 sensing contributes to human diseases, including pulmonary arterial hypertension and patent DA. Keywords Hypoxic pulmonary vasoconstriction Ductus arteriosus Mitochondria Oxygen-sensitive potassium channels Pulmonary arterial hypertension Patent ductus arteriosus

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700