The use of FTIR methods for rapid determination of contents of mineral and biogenic components in lake bottom sediments, based on studying of East Siberian lakes
详细信息    查看全文
  • 作者:S. K. Petrovskii ; O. G. Stepanova ; S. S. Vorobyeva…
  • 关键词:Fourier transform infrared spectroscopy (FTIRS) ; Biogeochemistry ; Bottom sediments ; Single peak analysis
  • 刊名:Environmental Earth Sciences
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:75
  • 期:3
  • 全文大小:1,238 KB
  • 参考文献:Bertaux J, Ledru M-P, Soubie´s F, Sondag F (1996) The use of quantitative mineralogy linked to palynological studies in palaeoenvironmental reconstruction: the case study of the ‘‘Lagoa Campestre’’ lake, Salitre, Minas Gerais, Brazil. CR Acad Sci Paris 323(Series II):65–71
    Braguglia CM, Campanella L, Petronio BM, Scerboa R (1995) Sedimentary humic acids in the continental margin of the Ross Sea (Antarctica). lnt J Environ Anal Chem 60:61–70CrossRef
    Brauer A, Endres C, Gunter C, Litt T, Stebich M, Negendank JFW (1999) High resolution sediment and vegetation responses to Younger Dryas climate change in varved lake sediments from Meerfelder Maar, Germany. Quat Sci Rev 18:321–329CrossRef
    Calace N, Capolei M, Lucchese M, Petronio BM (1999) The structural composition of humic compounds as indicator of organic carbon sources. Talanta 49:277–284CrossRef
    Chester R, Elderfield H (1966) The infra-red determination of total carbonate in marine carbonate sediments. Chem Geol 1:277–290CrossRef
    Chester R, Elderfield H (1968) The infrared determination of opal in siliceous deep-sea sediments. Geochim Cosmochim Acta 32:1128–1140CrossRef
    Chester R, Green RN (1968) The infra-red determination of quartz in sediments and sedimentary rocks. Chem Geol 3:199–212CrossRef
    Fedotov AP, Bezrukova EV, Vorobyova SS, Hlystov OM, Levina OV, Mizandrotsev IV, Mazepova GF, Semenov AR, Zheleznyakova TO, Krapivina SM, Chebykin EP, Grachev MA (2001) Sediments of Lake Khovsgol like a record of Halocene and Latter Pleistocene paleoclimate. Russ Geol Geophys 42:384–390
    Fedotov AP, Chebykin EP, Semenov MY, Vorobyova SS, Osipov EY, Golobokova LP, Pogodaeva TV, Zheleznyakova TO, Grachev MA, Tomurhuu D, Ts Oyunchimeg, Ts Narantsetseg, Tomurtogoo O, Dolgikh PT, Arsenyuk MI, De Batist M (2004) Changes in the volume and salinity of Lake Khubsugul (Mongolia) in response to global climate changes in the upper Pleistocene and the Holocene. J Paleogeogr Paleoclimatol Paleoecol 209(1–4):245–257CrossRef
    Fedotov AP, Vorobyeva SS, Vershinin KE, Nurgaliev DK, Enushchenko IV, Krapivina SM, Tarakanova KV, Ziborova GA, Yassonov PG, Borissov AS (2012a) Climate changes in East Siberia (Russia) in the Holocene based on diatom, chironomid and pollen records from the sediments of Lake Kotokel. J Paleolimnol 47:617–630CrossRef
    Fedotov AP, Trunova VA, Zvereva VV, Maksimovskaya VV, Melgunov MS (2012b) Reconstruction of glacier fluctuation (East Siberia, Russia) during the last 160 years based on high-resolution geochemical proxies from proglacial lake bottom sediments of the Baikalsky Ridge. Int J Environ Stud 69(5):806–815CrossRef
    Fedotov AP, Phedorin MA, Enushchenko IV, Vershinin KE, Krapivina SM, Vologina EG, Petrovskii SK, Melgunov MS, Sklyarova OA (2013) Drastic desalination of small lakes in East Siberia (Russia) in the early twentieth century: inferred from sedimentological, geochemical and palynological composition of small lakes. Environ Earth Sci 68:1733–1744CrossRef
    Fedotov AP, Trunova VA, Enushchenko IV, Vorobyeva SS, Stepanova OG, Petrovskii SK, Melgunov MS, Zvereva VV, Krapivina SM, Zheleznyakova TO (2014) A 850-year record climate and vegetation changes in East Siberia (Russia), inferred from geochemical and biological proxies of lake sediments Environ. Earth Sci. doi:10.​1007/​s12665-014-3906-1
    Forghani G, Moore F, Lee S, Qishlaqi A (2009) Geochemistry and speciation of metals in sediments of the Maharlu Saline Lake, Shiraz, SW Iran. Environ Earth Sci 59:173–184CrossRef
    Grachev MA, Likhoshwai EV, Vorobiova SS, Khlystov OM, Bezrukova EV, Veinberg EV, Goldberg EL, Granina LZ, Kornakova EG, Lazo FI, Levina OV, Letunova PP, Otinov PV, Pirog VV, Fedotov AP, Yaskevich SA, Bobrov VA, Sukhorukov FV, Rezchikov VI, Fedorin MA, Zolotarev KV, Kravchinsky VA (1997) Signals of the paleoclimates of upper Pleistocene in the sediments of Lake Baikal. Russ Geol Geophys 35:994–1018 (in Russian)
    Hecker C, van der Meijde M, van der Meer FD (2010) Thermal infrared spectroscopy on feldspars—successes, limitations and their implications for remote sensing. Earth Sci Rev 103:60–70CrossRef
    Herbert TD, Tom BA, Burnett C (1992) Precise major component determinations in deep-sea sediments using Fourier transform infrared spectroscopy. Geochim Cosmochim Acta 56:1759–1763CrossRef
    Herrin E, Hicks HS, Robertson H (1958) A rapid volumetric analysis for carbonate in rocks. Field Lab 26:139–144
    Liu X, Colman SM, Brown ET, Minor EC, Li H (2013) Estimation of carbonate, total organic carbon, and biogenic silica content by FTIR and XRF techniques in lacustrine sediments. J Paleolimnol 50:387–398CrossRef
    Mecozzi M, Pietrantonio E, Amici M, Romanelli G (2001) Determination of carbonate in marine solid samples by FTIR-ATR spectroscopy. Analyst 126:144–146CrossRef
    Members BDP (2001) The new BDP-98 600-m drill core from Lake Baikal: a key late Cenozoic sedimentary section in continental Asia. Quat Intl 80–81:19–36
    Members BDP (2005) A new Quaternary record of regional tectonic, sedimentation and paleoclimate changes from drill core BDP-99 at Posolskaya Bank, Lake Baikal. Quat Int 136:105–121CrossRef
    Meyer-Jacob C, Vogel H, Gebhardt AC, Wennrich V, Melles M, Rosén P (2014) Biogeochemical variability during the past 3.6 million years recorded by FTIR spectroscopy in the sediment record of Lake El’gygytgyn, Far East Russian Arctic. Clim Past 10:209–220CrossRef
    Muller PJ, Schneider R (1993) An automated leaching method for the determination of opal in sediments and particulate matter. Deep Sea Res 40:425–444CrossRef
    Nakagawa T, Kitagawa H, Yasuda Y, Tarasov PE, Gotanda K, Sawai Y (2005) Pollen/event stratigraphy of the varved sediment of Lake Suigetsu, central Japan from 15,701 to 10,217 SG yr BP (Suigetsu varve years before present): description, interpretation, correlation with other regions. Quat Sci Rev 24:1691–1701CrossRef
    Phedorin MA, Fedotov AP, Vorobieva SS, Ziborova GA (2008) Signature of long supercycles in the Pleistocene history of Asian limnic systems. J Paleolimnol 40:445–452CrossRef
    Popovskaya GI, Genkal SI, Likhoshway YeV (2002) Diatoms of the Plankton of Lake Baikal: Atlas and Key. Novosibirsk, Nauka, p 168
    Rosén P, Persson P (2006) Fourier-transform infrared spectroscopy (FTIRS), a new method to infer past changes in tree-line position and TOC using lake sediment. J Paleolimnol 35:913–923CrossRef
    Rosén P, Vogel H, Cunningham L, Reuss N, Conley DJ, Persson P (2009) Fourier transform infrared spectroscopy, a new method for rapid determination of total organic and inorganic carbon and biogenic silica concentration in lake sediments. J Paleolimnol 43:247–259CrossRef
    Sifeddine A, Frohlich F, Fournier M, Martin L, Servant M, Soudies F, Turcq B, Suguio K, Volkmer-Ribeiro C (1994) La sedimentation lacustre indicateur de changements de paleoenvironments au cours des 30,000 dernieres annees (Carajas, Amazonie, Bresil). C R Acad Sci Paris 318(Series II):1645–1652
    Solotchina EP, Prokopenko AA, Vasilevsky AN et al (2002) Simulation of XRD patterns as an optimal technique for studying glacial and interglacial clay mineral associations in bottom sediments of Lake Baikal. Clay Miner 37:105–119CrossRef
    Solotchina EP, Sklyarov EV, Solotchin PA, Vologina EG, Sklyarova OA, Ukhova NN (2013) Holocene sedimentary record of Bol’shoe Alginskoe Lake, Western Transbaikalia: connection with paleoclimate. Dokl Earth Sci 449:313–318CrossRef
    Solotchina EP, Sklyarov EV, Solotchin PA, Vologina EG, Sklyarova OA (2014) Mineralogy and crystal chemistry of carbonates from the Holocene sediments of Lake Kiran (western Transbaikalia): connection with paleoclimate. Russ Geol Geophys 55:472–482CrossRef
    Stolpovskaya VN, Solotchina EP, Zhdanova AN (2006) Quantitative analysis of non-clay minerals of bottom sediments from lakes Baikal and Khovsgol by the method of IR spectroscopy. Russ Geol Geophys 47:778–788
    Swann GEA, Patwardhan SV (2011) Application of Fourier transform infrared spectroscopy (FTIR) for assessing biogenic silica sample purity in geochemical analyses and palaeoenvironmental research. Clim Past 7:65–74CrossRef
    Trunova VA, Stepanova OG, Zvereva VV, Sidorina AV, Melgunov MS, Petrovskii SK, YaV Rakshund, Fedotov AP (2015) Tracing recent glacial events in bottom sediments of a glacial lake (East Sayan Ridge, Russia) from high-resolution SR-XRF, ICP-MS, and FTIR records. X-ray Spectrom. doi:10.​1002/​xrs.​2616
    Vogel H, Rose´ NP, Wagner B, Melles M, Persson P (2008) Fourier transform infrared spectroscopy, a new cost-effective tool for quantitative analysis of biogeochemical properties in long sediment records. J Paleolimnol 40:689–702CrossRef
    Wirrmann D, Bertaux J (2001) Late Holocene paleoclimatic changes in western central Africa inferred from mineral abundances in dated sediments from Lake Ossa (southwestern Cameroon). Quat Res 56:275–287CrossRef
  • 作者单位:S. K. Petrovskii (1)
    O. G. Stepanova (1)
    S. S. Vorobyeva (1)
    T. V. Pogodaeva (1)
    A. P. Fedotov (1)

    1. Limnological Institute of the Siberian Branch of RAS, Ulan-Batorskaya st., 3, Irkutsk, 664033, Russia
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:None Assigned
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1866-6299
文摘
Technique for estimation of contents of the major components of lake bottom sediments using single peak analysis procedure has been developed. The technique allows estimation of biogenic silica (BSi), total inorganic carbon (TIC), total organic carbon (TOC) and quartz and feldspars content in bottom sediments. The calibration models are based on the following spectral regions: bands at 646 cm−1 (feldspars), 695 cm−1 (quartz), 874 cm−1 (TIC); the range from 818 to 835 cm−1 (BSi), the range of C–H vibrations (2800–3000 cm−1) (TOC). The technique has been probed for a number of Eastern Siberian lakes and results are compared with the data of other methods. It has been shown that the use of single peak analysis procedure allows very rapid FTIR estimation of the major components content in bottom sediments with accuracy, which is acceptable for many tasks.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700