Engineering chimeric thermostable GH7 cellobiohydrolases in Saccharomyces cerevisiae
详细信息    查看全文
  • 作者:Sanni P. Voutilainen (1) (2)
    Susanna Nurmi-Rantala (1)
    Merja Penttil? (1)
    Anu Koivula (1)
  • 关键词:Cellulase ; Carbohydrate ; binding module ; Disulphide bridge ; Saccharomyces cerevisiae ; Talaromyces emersonii ; Protein engineering ; GH7 ; CBM1 ; CBM2 ; CBM3
  • 刊名:Applied Microbiology and Biotechnology
  • 出版年:2014
  • 出版时间:April 2014
  • 年:2014
  • 卷:98
  • 期:7
  • 页码:2991-3001
  • 全文大小:615 KB
  • 参考文献:1. Boer H, Teeri TT, Koivula A (2000) Characterization of / Trichoderma reesei cellobiohydrolase Cel7A secreted from / Pichia pastoris using two different promoters. Biotechnol Bioeng 69:486-94 CrossRef
    2. Boraston A, Warren RA, Kilburn DG (2001) Glycosylation by / Pichia pastoris decreases the affinity of a family 2a carbohydrate-binding module from / Cellulomonas fimi: a functional and mutational analysis. Biochem J 358:423-30 CrossRef
    3. Boraston AB, Sandercock L, Warren RA, Kilburn DG (2003) / O-glycosylation of a recombinant carbohydrate-binding module mutant secreted by / Pichia pastoris. J Mol Microbiol Biotechnol 5:29-6 CrossRef
    4. Boraston AB, Bolam DN, Gilbert HJ, Davies GJ (2004) Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J 382:769-81 CrossRef
    5. Carrard G, Koivula A, S?derlund H, Beguin P (2000) Cellulose-binding domains promote hydrolysis of different sites on crystalline cellulose. Proc Natl Acad Sci U S A 97:10342-0347 CrossRef
    6. Cheek S, Krishna S, Grishin NV (2006) Structural classification of small, disulfide-rich protein domains. J Mol Biol 359:215-37 mb.2006.03.017" target="_blank" title="It opens in new window">CrossRef
    7. Davies G, Henrissat B (1995) Structures and mechanisms of glycosyl hydrolases. Structure 3:853-59 CrossRef
    8. Demain AL, Newcomb M, Wu JH (2005) Cellulase, clostridia, and ethanol. Microbiol Mol Biol Rev 69:124-54 CrossRef
    9. Fox JM, Jess P, Jambusaria RJ, Moo GM, Liphardt J, Clark DS, Blanch HW (2013) A single-molecule analysis reveals morphological targets for cellulase synergy. Nat Chem Biol 9:356-61 mbio.1227" target="_blank" title="It opens in new window">CrossRef
    10. Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A (2003) ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 31:3784-788 CrossRef
    11. Gietz RD, Woods RA (2002) Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol 350:87-6 CrossRef
    12. Grassick A, Murray PG, Thompson R, Collins CM, Byrnes L, Birrane G, Higgins TM, Tuohy MG (2004) Three-dimensional structure of a thermostable native cellobiohydrolase, CBH IB, and molecular characterization of the / cel7 gene from the filamentous fungus, / Talaromyces emersonii. Eur J Biochem 271:4495-506 CrossRef
    13. Guillén D, Sánchez S, Rodríguez-Sanoja R (2010) Carbohydrate-binding domains: multiplicity of biological roles. Appl Microbiol Biotechnol 85:1241-249 CrossRef
    14. Hall M, Rubin J, Behrens SH, Bommarius AS (2011) The cellulose-binding domain of cellobiohydrolase Cel7A from / Trichoderma reesei is also a thermostabilizing domain. J Biotechnol 155:370-76 CrossRef
    15. Igarashi K, Wada M, Hori R, Samejima M (2006) Surface density of cellobiohydrolase on crystalline celluloses. A critical parameter to evaluate enzymatic kinetics at a solid–liquid interface. FEBS J 273:2869-878 CrossRef
    16. Igarashi K, Koivula A, Wada M, Kimura S, Penttil? M, Samejima M (2009) High speed atomic force microscopy visualizes processive movement of / Trichoderma reesei cellobiohydrolase I on crystalline cellulose. J Biol Chem 284:36186-6190 CrossRef
    17. Igarashi K, Uchihashi T, Koivula A, Wada M, Kimura S, Okamoto T, Penttil? M, Ando T, Samejima M (2011) Traffic jams reduce hydrolytic efficiency of cellulase on cellulose surface. Science 333:1279-282 CrossRef
    18. Ilmén M, den Haan R, Brevnova E, McBride J, Wiswall E, Froehlich A, Koivula A, Voutilainen SP, Siika-aho M, la Grange DC, Thorngren N, Ahlgren S, Mellon M, Deleault K, Rajgarhia V, van Zyl WH, Penttil? M (2011) High level secretion of cellobiohydrolases in / Saccharomyces cerevisiae. Biotechnol Biofuels 4:30-5 CrossRef
    19. Imai T, Boisset C, Samejima M, Igarashi K, Sugiyama J (1998) Unidirectional processive action of cellobiohydrolase Cel7A on / Valonia cellulose microcrystals. FEBS Lett 432:113-16 CrossRef
    20. Kim T, Chokhawala HA, Nadler D, Blanch HW, Clark DS (2010) Binding modules alter the activity of chimeric cellulases: Effects of biomass pretreatment and enzyme source. Biotechnol Bioeng 107:601-11 CrossRef
    21. Lehti? J, Sugiyama J, Gustavsson M, Fransson F, Linder M, Teeri TT (2003) The binding specificity and affinity determinants of family 1 and family 3 cellulose binding modules. Proc Natl Acad Sci U S A 100:484-89 CrossRef
    22. Lever M (1972) A new reaction for colorimetric determination of carbohydrates. Anal Biochem 47:273-79 CrossRef
    23. Levy I, Shoseyov O (2002) Cellulose-binding domains: biotechnological applications. Biotechnol Adv 20:191-13 CrossRef
    24. Linder M, Mattinen ML, Kontteli M, Lindeberg G, St?hlberg J, Drakenberg T, Reinikainen T, Pettersson G, Annila A (1995) Identification of functionally important amino acids in the cellulose-binding domain of / Trichoderma reesei cellobiohydrolase I. Protein Sci 4:1056-064
    25. McLean BW, Bray MR, Boraston AB, Gilkes NR, Haynes CA, Kilburn DG (2000) Analysis of binding of the family 2a carbohydrate-binding module from / Cellulomonas fimi xylanase 10A to cellulose: specificity and identification of functionally important amino acid residues. Protein Eng 13(11):801-09 CrossRef
    26. McLean BW, Boraston AB, Brouwer D, Sanaie N, Fyfe CA, Warren RAJ, Kilburn DG, Haynes CA (2002) Carbohydrate-binding modules recognize fine substructures of cellulose. J Biol Chem 277:50245-0254 CrossRef
    27. Nikolova PV, Creagh AL, Duff SJ, Haynes CA (1997) Thermostability and irreversible activity loss of exoglucanase/xylanase Cex from / Cellulomonas fimi. Biochemistry 36:1381-388 CrossRef
    28. Orr-Weaver TL, Szostak JW, Rothstein RJ (1981) Yeast transformation: a model system for the study of recombination. Proc Natl Acad Sci U S A 78:6354-358 CrossRef
    29. Reinikainen T, Ruohonen L, Nevanen T, Laaksonen L, Kraulis P, Jones TA, Knowles JK, Teeri TT (1992) Investigation of the function of mutated cellulose-binding domains of / Trichoderma reesei cellobiohydrolase I. Proteins 14:475-82 CrossRef
    30. Sambrook J, Russel DW (2001) Molecular cloning, 3rd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor
    31. Sherman F (2002) Getting started with yeast. Methods Enzymol 350:3-1 CrossRef
    32. Suurn?kki A, Tenkanen M, Siika-aho M, Niku-Paavola ML, Viikari L, Buchert J (2000) / Trichoderma reesei cellulases and their core domains in the hydrolysis and modification of chemical pulp. Cellulose 7:189 CrossRef
    33. Tomme P, Driver DP, Amandoron EA, Miller RC Jr, Warren RAJ, Kilburn DG (1995) Comparison of a fungal (family I) and bacterial (family II) cellulose-binding domain. J Bacteriol 177(15):4356-363
    34. Tormo J, Lamed R, Chirino AJ, Morag E, Bayer EA, Shoham Y, Steitz TA (1996) Crystal structure of a bacterial family-III cellulose-binding domain: a general mechanism for attachment to cellulose. EMBO J 15:5739-751
    35. Tuohy MG, Walsh DJ, Murray PG, Claeyssens M, Cuffe MM, Savage AV, Coughlan MP (2002) Kinetic parameters and mode of action of the cellobiohydrolases produced by / Talaromyces emersonii. Biochim Biophys Acta 1596:366-80 CrossRef
    36. van Tilbeurgh H, Claeyssens M (1985) Detection and differentiation of cellulase components using low molecular mass fluorogenic substrates. FEBS Lett 187:283-88 CrossRef
    37. van Zyl WH, Lynd LR, Den Haan R, McBride JE (2007) Consolidated bioprocessing for bioethanol production using / Saccharomyces cerevisiae. Biofuels 108:205-35 CrossRef
    38. Viikari L, Alapuranen M, Puranen T, Vehmaanper? J, Siika-Aho M (2007) Thermostable enzymes in lignocellulose hydrolysis. Adv Biochem Eng Biotechnol 108:121-45
    39. Viikari L, Vehmaanper? J, Koivula A (2012) Lignocellulosic ethanol: from science to industry. Biomass Bioenergy 46:13-4 mbioe.2012.05.008" target="_blank" title="It opens in new window">CrossRef
    40. Voutilainen SP, Boer H, Linder MB, Puranen T, Rouvinen J, Vehmaanper? J, Koivula A (2007) Heterologous expression of / Melanocarpus albomyces cellobiohydrolase Cel7B, and random mutagenesis to improve its thermostability. Enzyme Microb Tech 41:234-43 mictec.2007.01.015" target="_blank" title="It opens in new window">CrossRef
    41. Voutilainen SP, Puranen T, Siika-Aho M, Lappalainen A, Alapuranen M, Kallio J, Hooman S, Viikari L, Vehmaanper? J, Koivula A (2008) Cloning, expression, and characterization of novel thermostable family 7 cellobiohydrolases. Biotechnol Bioeng 101:515-28 CrossRef
    42. Voutilainen SP, Boer H, Alapuranen M, J?nis J, Vehmaanper? J, Koivula A (2009) Improving the thermostability and activity of / Melanocarpus albomyces cellobiohydrolase Cel7B. Appl Microbiol Biotechnol 83:261-72 CrossRef
    43. Voutilainen SP, Murray PG, Tuohy MG, Koivula A (2010) Expression of / Talaromyces emersonii cellobiohydrolase Cel7A in / Saccharomyces cerevisiae and rational mutagenesis to improve its thermostability and activity. Protein Eng, Des Sel 23:69-9 CrossRef
    44. Wan W, Wang D, Gao X, Hong J (2011) Expression of family 3 cellulose-binding module (CBM3) as an affinity tag for recombinant proteins in yeast. Appl Microbiol Biotechnol 91:789-98 CrossRef
    45. Xu GY, Ong E, Gilkes NR, Kilburn DG, Muhandiram DR, Harris-Brandts M, Carver JP, Kay LE, Harvey TS (1995) Solution structure of a cellulose-binding domain from / Cellulomonas fimi by nuclear magnetic resonance spectroscopy. Biochemistry 34:6993-009 CrossRef
  • 作者单位:Sanni P. Voutilainen (1) (2)
    Susanna Nurmi-Rantala (1)
    Merja Penttil? (1)
    Anu Koivula (1)

    1. VTT Technical Research Centre of Finland, P.O. Box 1000, 02044 VTT, Espoo, Finland
    2. Department of Biotechnology and Chemical Technology, School of Chemical Technology, Aalto University, P.O. Box 16100, 00076 Aalto, Espoo, Finland
  • ISSN:1432-0614
文摘
We report here the effect of adding different types of carbohydrate-binding modules (CBM) to a single-module GH7 family cellobiohydrolase Cel7A from a thermophilic fungus Talaromyces emersonii (TeCel7A). Both bacterial and fungal CBMs derived from families 1, 2 and 3, all reported to bind to crystalline cellulose, were used. Chimeric cellobiohydrolases with an additional S–S bridge in the catalytic module of TeCel7A were also made. All the fusion proteins were secreted in active form and in good yields by Saccharomyces cerevisiae. The purified chimeric enzymes bound to cellulose clearly better than the catalytic module alone and demonstrated high thermal stability, having unfolding temperatures (T m) ranging from 72?°C to 77?°C. The highest activity enhancement on microcrystalline cellulose could be gained by a fusion with a bacterial CBM3 derived from Clostridium thermocellum cellulosomal-scaffolding protein CipA. The two CBM3 fusion enzymes tested were more active than the reference enzyme Trichoderma reesei Cel7A both at moderate (45?°C and 55?°C) and at high temperatures (60?°C and 65?°C), the hydrolysis yields being two- to three-fold better at 60?°C, and six- to seven-fold better at 65?°C. The best enzyme variant was also tested on a lignocellulosic feedstock hydrolysis, which demonstrated its potency in biomass hydrolysis even at 70?°C.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700