A complete hydro-climate model chain to investigate the influence of sea surface temperature on recent hydroclimatic variability in subtropical South America (Laguna Mar Chiquita, Argentina)
详细信息    查看全文
  • 作者:Magali Troin ; Mathieu Vrac ; Myriam Khodri ; Daniel Caya…
  • 关键词:LMDz ; Statistical downscaling ; Hydrological modeling ; Lake level variability ; Southeastern South America
  • 刊名:Climate Dynamics
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:46
  • 期:5-6
  • 页码:1783-1798
  • 全文大小:1,492 KB
  • 参考文献:Arnold JG, Srinivasan R, Muttiah RS, Williams JR (1998) Large area hydrologic modelling and assessment-part I: model development. J Am Water Resour Assoc 34:73–89CrossRef
    Barreiro M (2010) Influence of ENSO and the South Atlantic Ocean on climate predictability over southeastern South America. Clim Dyn 35:1493–1508CrossRef
    Barreiro M, Díaz N, Renom M (2014) Role of the global oceans and land–atmosphere interaction on summertime interdecadal variability over northern Argentina. Clim Dyn 42:1733–1753CrossRef
    Barros V, Clarke R, Silva Dias P (2000) Climate change in the La Plata Basin. In: CIMA CONICET (eds) UBA
    Barros V, Doyle M, Gonzalez M, Camilloni I, Bejaran R, Caffera RM (2002) Climate variability over subtropical South America and the South American monsonn: a review. Meteorologica 27:33–58
    Barros VR, Doyle ME, Camilloni IA (2008) Precipitation trends in southeastern South America: relationship with ENSO phases and with low-level circulation. Theor Appl Climatol 93:19–33CrossRef
    Berbery ER, Barros VR (2002) The hydrologic cycle of the La Plata basin in South America. J Hydrometeorol 3:630–645CrossRef
    Camilloni I, Barros V (2003) Extreme discharge events in the Parana River and their climate forcing. J Hydrol 278:94–106CrossRef
    Carreau J, Vrac M (2011) Stochastic downscaling of precipitation with neural networks conditional mixture models. Water Resour Res. doi:10.​1029/​2010WR010128
    Chen J, Brissette F, Chaumont D, Braun M (2013) Finding appropriate bias correction methods in downscaling precipitation for hydrologic impact studies over North America. Water Resour Res 49:4187–4205CrossRef
    Déqué M (2007) Frequency of precipitation and temperature extremes over France in an anthropogenic scenario: model results and statistical correction according to observed values. Glob Planet Change 57:16–26CrossRef
    Dettinger MD, Cayan DR, McCabe GM, Marengo JA (2000) Multiscale streamflow variability associated with El Niño/Southern Oscillation. In: Diaz HF, Markgraf V (eds) El Niño and the Southern Oscillation-multiscale variability and global and regional impacts. Cambridge University Press, Cambridge, pp 113–146
    Diaz AF, Studzinski CD, Mechoso CR (1998) Relationships between precipitation anomalies in Uruguay and southern Brazil and sea surface temperatures in the Pacific and Atlantic Oceans. J Clim 11:251–271CrossRef
    DosReis RJ, Dias NL (1998) Multi-season lake evaporation: energy-budget estimates and CRLE model assessment with limited meteorological observations. J Hydrol 208:135–147CrossRef
    Fowler HJ, Blenkinsop S, Tebaldi C (2007) Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modeling. Int J Climatol 27:1547–1578CrossRef
    Garcia NO, Mechoso CR (2005) Variability in the discharge of South American rivers and in climate. Hydrol Sci J 50:459–478
    Garcia NO, Vargas WM (1998) The temporal climatic variability in the Rio de la Plata basin displayed by the river discharge. Clim Change 38:359–379CrossRef
    Gassman PW, Reyes MR, Green CH, Arnold JG (2007) The soil and water assessment tool: historical development, applications, and future research directions. Trans ASABE 50(4):1211–1250CrossRef
    Genta JL, Perez Iribarren G, Mechoso C (1998) A recent increasing trend in the streamflow of rivers in southeastern South America. J Clim 11:2858–2862CrossRef
    Grimm AM, Barros VR, Doyle ME (2000) Climate variability in southern South America associated with El Niño and La Niña events. J Clim 13:35–58CrossRef
    Hillman G (2003) Analysis y simulacion hidrologica del sistema de Mar Chiquita. Unpublished PhD, Universidad el Cordoba, Argentina
    Hourdin F, Musat I, Bony S, Braconnot P, Codron F, Dufresne JL, Fairhead L, Filiberti MA, Friedlingstein P, Grandpeix JY, Krinner G, Le Van P, Li ZX, Lott F (2006) The LMDZ4 general circulation model: climate performance and sensitivity to parameterized physics with emphasis on tropical convection. Clim Dyn 27:787–813CrossRef
    Huang HP, Seager R, Kushnir Y (2005) The 1976/77 transition in precipitation over the Americas and the influence of tropical sea surface temperature. Clim Dyn 24:721–740CrossRef
    IPCC (2007) The physical science basis. Contribution of working group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds). Cambridge University Press
    IPCC (2013) Summary for policymakers. In Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge
    Junquas C, Vera CS, Li L, Le Treut H (2012) Summer precipitation variability over Southeastern South America in a global warming scenario. Clim Dyn 38:1867–1883CrossRef
    Junquas C, Vera CS, Li L, Le Treut H (2013) Impact of SST changes projected in a global warming scenario on summer rainfall in southeastern South America. Clim Dyn 40:1569–1589CrossRef
    Krishnamurthy V, Misra V (2010) Observed ENSO teleconnections with the South American monsoon system. Atmos Sci Lett 11:7–12
    Labat D (2005) Recent advances in wavelet analyses: part 1. A review of concepts. J Hydrol 314:275–288CrossRef
    Liebmann B, Vera CS, Carvalho LMV, Camilloni IA, Hoerling M, Allured D, Barros VR, Baez J, Bidegain M (2004) An observed trend in central South American precipitation. J Clim 17:4357–4367CrossRef
    Maraun D, Wetterhall F, Ireson AM, Chandler RE, Kendon EJ, Widmann M, Brienen S, Rust HW, Sauter T, Themeßl M, Venema VKC, Chun KP, Goodess CM, Jones RG, Onof C, Vrac M, Thiele-Eich I (2010) Precipitation downscaling under climate change. Recent developments to bridge the gap between dynamical models and the end user. Rev Geophys 48(3):RG3003CrossRef
    Marti O, Braconnot P, Bellier J, Benshila R, Bony S, Brockmann P, Cadule P, Caubel A, Denvil S, Dufresne JL, Fairhead L, Filiberti MA, Foujols MA, Fichefet T, Friedlingstein P, Grandpeix JY, Hourdin F, Krinner G, Lévy C, Madec G, Musat I, de Nolbet N, Polcher J, Talandier C (2005) The new IPSL climate system model: IPSL-CM4. Technical Note, IPSL. http://​www.​dods.​ipsl.​jussieu.​fr/​omamce/​IPSLCM4/​DocIPSLCM4
    Michelangeli PA, Vrac M, Loukos H (2009) Probabilistic downscaling approaches: application to wind cumulative distribution functions. Geophys Res Lett 36:L11708CrossRef
    Morton FI (1983) Operational estimates of lake evaporation. J Hydrol 66:77–100CrossRef
    Neitsch SL, Arnold JG, Kiniry JR, Williams JR, King KW (2002) Soil and water assessment tool theoretical documentation. Version 2000, Texas Water Resources Institutes, College Station
    Neitsch SL, Arnold JG, Kiniry JR, Williams JR (2005) Soil and water assessment tool, theoretical documentation. Blackland Res. Cent., Tex. A&M, Temple
    Nobre P, Marengo JA, Cavalcanti IFA, Obregon G, Barros V, Camilloni I, Campos N, Ferreira AG (2006) Seasonal-to-decadal predictability and prediction of South American climate. J Clim 19:5988–6004CrossRef
    Paegle JN, Mo KC (2002) Linkages between summer rainfall variability over South America and sea surface temperature anomalies. J Clim 15:1389–1407CrossRef
    Pasquini AI, Lecomte KL, Piovano EL, Depetris PJ (2006) Recent rainfall and runoff variability in central Argentina. Quat Int 158:127–139CrossRef
    Penalba OC, Vargas WM (2004) Interdecadal and interannual variations of annual and extreme precipitation over central-northeastern Argentina. Int J Climatol 24:1565–1580CrossRef
    Pezzi LP, Cavalcanti IFA (2001) The relative importance of ENSO and tropical Atlantic sea surface temperature anomalies for seasonal precipitation over South America: a numerical study. Clim Dyn 17:205–212CrossRef
    Piovano EL, Ariztegui D, Córdoba F, Cioccale M, Sylvestre F (2009) Hydrological variability in South America below the tropic of capricorn (Pampas and Eastern Patagonia, Argentina) during the last 13.0 Ka. In: Vimaux F et al (eds) Past climate variability in South America and surrounding regions. Developments in paleoenvironmental research, vol 14. doi:10.​1007/​978-90-481-2672-9-14
    Planchon O, Rosier K (2005) Variabilité des régimes pluviométriques dans le nord-ouest de l’Argentine: problèmes posés et analyse durant la deuxième moitié du vingtième siècle. Ann Assoc Int Climatol 2:55–76
    Robertson AW, Mechoso CR (1998) Interannual and decadal cycles in river flows of southeastern South America. J Clim 11:2570–2581CrossRef
    Robertson AW, Mechoso CR (2000) Interannual and interdecadal variability of the South Atlantic convergence zone. Mon Weather Rev 128:2947–2957CrossRef
    Robertson AW, Mechoso CR, Garcia NO (2001) Interannual prediction of the Paraná river. Geophys Res Lett 28:4235–4238CrossRef
    Seager R, Naik N, Baethgen W, Robertson A, Kushnir Y, Nakamura J, Jurburg S (2010) Tropical oceanic causes of interannual to multidecadal precipitation variability in Southeast South America over the past century. J Clim 23:5517–5539CrossRef
    Taschetto AS, Wainer I (2008) The impact of the subtropical South Atlantic SST on South American precipitation. Ann Geophys 26:3457–3476CrossRef
    Troin M, Vallet-Coulomb C, Sylvestre F, Piovano E (2010) Hydrological modelling of a closed lake (Laguna Mar Chiquita, Argentina) in the context of 20th century climatic changes. J Hydrol 393:233–244CrossRef
    Troin M, Vallet-Coulomb C, Piovano E, Sylvestre F (2012) Hydrological impacts of climate change: assessment of a basin-lake model applicability using contrasting climatic conditions in subtropical South America. J Hydrol 475:379–391CrossRef
    Troin M, Velázquez JA, Caya D, Brissette F (2015) Comparing statistical post-processing of regional and global climate scenarios for hydrological impacts assessment: a case study of two Canadian catchments. J Hydrol 520:268–288CrossRef
    Vargas WM, Penalba OC, Minetti JL (1999) Las precipitaciones mensuales en zonas de la Argentina y el ENOS. Un enfoque hacia problemas de decisión. Meteorológicas 24:3–22
    Vera C, Díaz L (2014) Anthropogenic influence on summer precipitation trends over South America in CMIP5 models. Int J Climatol. doi:10.​1002/​joc.​4153
    Vera C, Silvestri G (2009) Precipitation interannual variability in South America from the WRCP-CMIP3 multi-model dataset. Clim Dyn 32:1003–1014CrossRef
    Vera C, Silvestri G, Liebmann B, Gonzalez P (2006a) Climate change scenarios for seasonal precipitation in South America from IPCC-AR4 models. Geophys Res Lett 33:L13707. doi:10.​1029/​2006GL025759 CrossRef
    Vera C, Higgins W, Amador J, Ambrizzi T, Garreaud R, Gochis D, Gutzler D, Lettenmaier D, Marengo CR, Nogues-Paegle J, Silva Dias PL, Zhang C (2006b) Toward a unified view of the American monsoon systems. J Clim 19:4977–5000CrossRef
    Vrac M, Drobinski P, Merlo A, Herrmann M, Lavaysse C, Li L, Somot S (2012) Dynamical and statistical downscaling of the French Mediterranean climate: uncertainty assessment. Nat Hazards Earth Syst Sci 12:2769–2784. doi:10.​5194/​nhess-12-2769-2012 CrossRef
    Zhou J, Lau KM (1998) Does a monsoon climate exist over South America? J Clim 11:1020–1040CrossRef
  • 作者单位:Magali Troin (1) (2)
    Mathieu Vrac (3)
    Myriam Khodri (4)
    Daniel Caya (2)
    Christine Vallet-Coulomb (1)
    Eduardo Piovano (5)
    Florence Sylvestre (1)

    1. CNRS, IRD, CEREGE UM34, Aix-Marseille Université, 13545, Aix-en-Provence, France
    2. Department of Construction Engineering, École de technologie supérieure, Université du Québec, 1100 Notre-Dame Street West, Montreal, QC, H3C 1K3, Canada
    3. Laboratoire des Sciences du Climat et de l’Environnement (LSCE-IPSL) CNRS-CEA-UVSQ, Centre d’étude de Saclay, Orme des Merisiers, Bat. 701, 91191, Gif-Sur-Yvette, France
    4. LOCEAN/IPSL, IRD/CNRS/MNHN/UPMC, Sorbonne Université, Tour 45-55, 4 place Jussieu, 75252, Paris Cedex 5, France
    5. CICTERRA-CIGeS, Universidad Nacional de Córdoba, Av. Velez Sarsfield 1611, X5016GCA, Córdoba, Argentina
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Geophysics and Geodesy
    Meteorology and Climatology
    Oceanography
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0894
文摘
During the 1970s, Laguna Mar Chiquita (Argentina) experienced a dramatic hydroclimatic anomaly, with a substantial rise in its level. Precipitations are the dominant driving factor in lake level fluctuations. The present study investigates the potential role of remote forcing through global sea surface temperature (SST) fields in modulating recent hydroclimatic variability in Southeastern South America and especially over the Laguna Mar Chiquita region. Daily precipitation and temperature are extracted from a multi-member LMDz atmospheric general circulation model (AGCM) ensemble of simulations forced by HadISST1 observed time-varying global SST and sea-ice boundary conditions from 1950 to 2005. The various members of the ensemble are only different in their atmospheric initial conditions. Statistical downscaling (SD) is used to adjust precipitation and temperature from LMDz ensemble mean at the station scale over the basin. A coupled basin-lake hydrological model (cpHM) is then using the LMDz-downscaled (LMDz-SD) climate variables as input to simulate the lake behavior. The results indicate that the long-term lake level trend is fairly well depicted by the LMDz-SD-cpHM simulations. The 1970s level rise and high-level conditions are generally well captured in timing and in magnitude when SST-forced AGCM-SD variables are used to drive the cpHM. As the LMDz simulations are forced solely with the observed sea surface conditions, the global SST seems to have an influence on the lake level variations of Laguna Mar Chiquita. As well, this study shows that the AGCM-SD-cpHM model chain is a useful approach for evaluating long-term lake level fluctuations in response to the projected climate changes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700