Cellular immunity induced by a recombinant adenovirus- human dendritic cell vaccine for melanoma
详细信息    查看全文
  • 作者:Hadas Prag Naveh (1)
    Lazar Vujanovic (1)
    Lisa H Butterfield (1) (2) (3) (4)
  • 关键词:Adenovirus ; Dendritic cells ; T cells ; Cytokines ; Cancer vaccines
  • 刊名:Journal for Immunotherapy of Cancer
  • 出版年:2013
  • 出版时间:December 2013
  • 年:2013
  • 卷:1
  • 期:1
  • 全文大小:286 KB
  • 参考文献:1. Lasaro MO, Ertl HC: New insights on adenovirus as vaccine vectors. / Molecular Ther 2009, 17:1333-339. CrossRef
    2. Campos SK, Barry MA: Current advances and future challenges in Adenoviral vector biology and targeting. / Curr Gene Ther 2007, 7:189-04. CrossRef
    3. Butterfield LH, Vujanovic L: New approaches to the development of adenoviral dendritic cell vaccines in melanoma. / Curr Opin Investig Drugs 2010, 11:1399-408.
    4. Butterfield LH, Jilani SM, Chakraborty NG, Bui LA, Ribas A, Dissette VB, Lau R, Gamradt SC, Glaspy JA, McBride WH, / et al.: Generation of melanoma-specific cytotoxic T lymphocytes by dendritic cells transduced with a MART-1 adenovirus. / J Immunol 1998, 161:5607-613.
    5. Perez-Diez A, Butterfield LH, Li L, Chakraborty NG, Economou JS, Mukherji B: Generation of CD8+ and CD4+ T-cell response to dendritic cells genetically engineered to express the MART-1/Melan-A gene. / Cancer Res 1998, 58:5305-309.
    6. Butterfield LH, Comin-Anduix B, Vujanovic L, Lee Y, Dissette VB, Yang JQ, Vu HT, Seja E, Oseguera DK, Potter DM, / et al.: Adenovirus MART-1-engineered autologous dendritic cell vaccine for metastatic melanoma. / J Immunother 2008, 31:294-09. CrossRef
    7. Liu Y, Daley S, Evdokimova VN, Zdobinski DD, Potter DM, Butterfield LH: Hierarchy of alpha fetoprotein (AFP)-specific T cell responses in subjects with AFP-positive hepatocellular cancer. / J Immunol 2006, 177:712-21.
    8. Evdokimova VN, Liu Y, Potter DM, Butterfield LH: AFP-specific CD4+ helper T-cell responses in healthy donors and HCC patients. / J Immunother 2007, 30:425-37. CrossRef
    9. Butterfield LH, Ribas A, Potter DM, Economou JS: Spontaneous and vaccine induced AFP-specific T cell phenotypes in subjects with AFP-positive hepatocellular cancer. / Cancer Immunol Immunother 2007, 56:1931-943. CrossRef
    10. Schumacher L, Ribas A, Dissette VB, McBride WH, Mukherji B, Economou JS, Butterfield LH: Human dendritic cell maturation by adenovirus transduction enhances tumor antigen-specific T-cell responses. / J Immunother 2004, 27:191-00. CrossRef
    11. Vujanovic L, Whiteside TL, Potter DM, Chu J, Ferrone S, Butterfield LH: Regulation of antigen presentation machinery in human dendritic cells by recombinant adenovirus. / Cancer Immunol Immunother 2009, 58:121-33. CrossRef
    12. Vujanovic L, Szymkowski DE, Alber S, Watkins SC, Vujanovic NL, Butterfield LH: Virally infected and matured human dendritic cells activate natural killer cells via cooperative activity of plasma membrane-bound TNF and IL-15. / Blood 2010, 116:575-83. CrossRef
    13. Vujanovic L, Ballard W, Thorne SH, Vujanovic NL, Butterfield LH: Adenovirus-engineered human dendritic cells induce natural killer cell chemotaxis via CXCL8/IL-8 and CXCL10/IP-10. / Oncoimmunology 2012, 1:448-57. CrossRef
    14. Ribas A, Butterfield LH, Hu B, Dissette VB, Meng WS, Koh A, Andrews KJ, Lee M, Amar SN, Glaspy JA, / et al.: Immune deviation and Fas-mediated deletion limit antitumor activity after multiple dendritic cell vaccinations in mice. / Cancer Res 2000, 60:2218-224.
    15. Buchbinder SP, Mehrotra DV, Duerr A, Fitzgerald DW, Mogg R, Li D, Gilbert PB, Lama JR, Marmor M, Del Rio C, / et al.: Efficacy assessment of a cell-mediated immunity HIV-1 vaccine (the Step Study): a double-blind, randomised, placebo-controlled, test-of-concept trial. / Lancet 2008, 372:1881-893. CrossRef
    16. Koup RA, Lamoreaux L, Zarkowsky D, Bailer RT, King CR, Gall JG, Brough DE, Graham BS, Roederer M: Replication-defective adenovirus vectors with multiple deletions do not induce measurable vector-specific T cells in human trials. / J Virol 2009, 83:6318-322. CrossRef
    17. Pine SO, Kublin JG, Hammer SM, Borgerding J, Huang Y, Casimiro DR, McElrath MJ: Pre-existing adenovirus immunity modifies a complex mixed Th1 and Th2 cytokine response to an Ad5/HIV-1 vaccine candidate in humans. / PloS One 2011, 6:e18526. CrossRef
    18. Sukdolak C, Tischer S, Dieks D, Figueiredo C, Goudeva L, Heuft HG, Verboom M, Immenschuh S, Heim A, Borchers S, / et al.: CMV-, EBV- and ADV-specific T Cell immunity: screening and monitoring of potential third-party donors to improve post-transplantation outcome. / Biol Blood Marrow Transplant 2013, 19:1480-492. CrossRef
    19. Gerdemann U, Katari UL, Papadopoulou A, Keirnan JM, Craddock JA, Liu H, Martinez CA, Kennedy-Nasser A, Leung KS, Gottschalk SM, / et al.: Safety and clinical efficacy of rapidly-generated trivirus-directed T cells as treatment for adenovirus, EBV, and CMV infections after allogeneic hematopoietic stem cell transplant. / Mol Ther 2013,21(11):2113-1. CrossRef
    20. Leen AM, Myers GD, Sili U, Huls MH, Weiss H, Leung KS, Carrum G, Krance RA, Chang CC, Molldrem JJ, / et al.: Monoculture-derived T lymphocytes specific for multiple viruses expand and produce clinically relevant effects in immunocompromised individuals. / Nat Med 2006, 12:1160-166. CrossRef
    21. Feuchtinger T, Richard C, Joachim S, Scheible MH, Schumm M, Hamprecht K, Martin D, Jahn G, Handgretinger R, Lang P: Clinical grade generation of hexon-specific T cells for adoptive T-cell transfer as a treatment of adenovirus infection after allogeneic stem cell transplantation. / J Immunother 2008, 31:199-06. CrossRef
    22. Tsao H, Millman P, Linette GP, Hodi FS, Sober AJ, Goldberg MA, Haluska FG: Hypopigmentation associated with an adenovirus-mediated gp100/MART-1-transduced dendritic cell vaccine for metastatic melanoma. / Archives of dermatology 2002, 138:799-02. CrossRef
    23. Haluska F, Linette G, Jonash S, Hodi S, Longerich S, Yang S, Webb I, Stowell C, Kaplan J, Roberts B, Goldberg M: Immunologic gene therapy of melanoma: phase I study of therapy with dendritic cells transduced with recombinant adenoviruses encoding melanoma antigens (Abstract 1777). / Proc Am Soc Clin Oncol (Abstract) 2000, 19:453a.
    24. Blalock LT, Landsberg J, Messmer M, Shi J, Pardee AD, Haskell R, Vujanovic L, Kirkwood JM, Butterfield LH: Human dendritic cells adenovirally-engineered to express three defined tumor antigens promote broad adaptive and innate immunity. / Oncoimmunology 2012, 1:287-57. CrossRef
    25. Tang J, Murtadha M, Schnell M, Eisenlohr LC, Hooper J, Flomenberg P: Human T-cell responses to vaccinia virus envelope proteins. / Journal of virology 2006, 80:10010-0020. CrossRef
    26. Olive M, Eisenlohr L, Flomenberg N, Hsu S, Flomenberg P: The adenovirus capsid protein hexon contains a highly conserved human CD4+ T-cell epitope. / Human gene therapy 2002, 13:1167-178. CrossRef
    27. Butterfield LH, Ribas A, Dissette VB, Amarnani SN, Vu HT, Oseguera D, Wang HJ, Elashoff RM, McBride WH, Mukherji B, / et al.: Determinant spreading associated with clinical response in dendritic cell-based immunotherapy for malignant melanoma. / Cell Growth Differ 2003, 9:998-008.
    28. Ribas A, Glaspy JA, Lee Y, Dissette VB, Seja E, Vu HT, Tchekmedyian NS, Oseguera D, Comin-Anduix B, Wargo JA, / et al.: Role of dendritic cell phenotype, determinant spreading, and negative costimulatory blockade in dendritic cell-based melanoma immunotherapy. / J Immunother 2004, 27:354-67. CrossRef
    29. Huarte E, Larrea E, Hernandez-Alcoceba R, Alfaro C, Murillo O, Arina A, Tirapu I, Azpilicueta A, Hervas-Stubbs S, Bortolanza S, / et al.: Recombinant adenoviral vectors turn on the type I interferon system without inhibition of transgene expression and viral replication. / Mol Ther 2006, 14:129-38. CrossRef
    30. Whiteside TL, Zhao Y, Tsukishiro T, Elder EM, Gooding W, Baar J: Enzyme-linked immunospot, cytokine flow cytometry, and tetramers in the detection of T-cell responses to a dendritic cell-based multipeptide vaccine in patients with melanoma. / Clin Cancer Res 2003, 9:641-49.
    31. Poli A, Michel T, Theresine M, Andres E, Hentges F, Zimmer J: CD56bright natural killer (NK) cells: an important NK cell subset. / Immunology 2009, 126:458-65. CrossRef
    32. Steinman RM, Hawiger D, Nussenzweig MC: Tolerogenic dendritic cells. / Annu Rev Immunol 2003, 21:685-11. CrossRef
    33. Fischer HG, Frosch S, Reske K, Reske-Kunz AB: Granulocyte-macrophage colony-stimulating factor activates macrophages derived from bone marrow cultures to synthesis of MHC class II molecules and to augmented antigen presentation function. / J Immunol 1988, 141:3882-888.
    34. Everly JJ, Lonial S: Immunomodulatory effects of human recombinant granulocyte-macrophage colony-stimulating factor (rhuGM-CSF): evidence of antitumour activity. / Expert Opin Biol Ther 2005, 5:293-11. CrossRef
    35. van Leeuwen EM, Sprent J, Surh CD: Generation and maintenance of memory CD4(+) T cells. / Curr Opin Immunol 2009, 21:167-72. CrossRef
    36. Nwanegbo E, Vardas E, Gao W, Whittle H, Sun H, Rowe D, Robbins PD, Gambotto A: Prevalence of neutralizing antibodies to adenoviral serotypes 5 and 35 in the adult populations of The Gambia, South Africa, and the United States. / Clin Diagn Lab Immunol 2004, 11:351-57.
    37. Johnson MJ, Petrovas C, Yamamoto T, Lindsay RW, Lore K, Gall JG, Gostick E, Lefebvre F, Cameron MJ, Price DA, / et al.: Type I IFN induced by adenovirus serotypes 28 and 35 has multiple effects on T cell immunogenicity. / J Immunol 2012, 188:6109-118. CrossRef
    38. Tuting T, Wilson CC, Martin DM, Kasamon YL, Rowles J, Ma DI, Slingluff CL Jr, Wagner SN, van der Bruggen P, Baar J, / et al.: Autologous human monocyte-derived dendritic cells genetically modified to express melanoma antigens elicit primary cytotoxic T cell responses in vitro : enhancement by cotransfection of genes encoding the Th1-biasing cytokines IL-12 and IFN-alpha. / J Immunol 1998, 160:1139-147.
    39. Fridman WH, Pages F, Sautes-Fridman C, Galon J: The immune contexture in human tumours: impact on clinical outcome. / Nat Rev Cancer 2012, 12:298-06. CrossRef
    40. Braumuller H, Wieder T, Brenner E, Assmann S, Hahn M, Alkhaled M, Schilbach K, Essmann F, Kneilling M, Griessinger C, / et al.: T-helper-1-cell cytokines drive cancer into senescence. / Nature 2013, 494:361-65. CrossRef
  • 作者单位:Hadas Prag Naveh (1)
    Lazar Vujanovic (1)
    Lisa H Butterfield (1) (2) (3) (4)

    1. Department of Medicine, University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Suite 1.27, Pittsburgh, PA, 15213, USA
    2. Department of Surgery, University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Suite 1.27, Pittsburgh, PA, 15213, USA
    3. Department of Immunology, University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Suite 1.27, Pittsburgh, PA, 15213, USA
    4. University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Suite 1.27, Pittsburgh, PA, 15213, USA
  • ISSN:2051-1426
文摘
Background Human Adenoviral vectors (HAdV) are immunogenic vectors which have been tested in many vaccination and gene therapy settings. Dendritic cells (DC) transduced by genetically engineered HAdV-5 (HAdV-5/DC), are investigational cancer vaccines being tested clinically. We have previously examined immune responses to HAdV-5 -encoded melanoma tumor antigens. Here, we determined whether the HAdV-5/DC also present immunogenic HAdV-5 vector-derived antigens, and characterized the cellular immune response to the viral as well as encoded melanoma tumor antigens. Methods Both CD4+ and CD8+ HAdV-5-specific T cell responses were examined in vitro, with cells from both 8 healthy donors (HD) and 2 melanoma patients. PBMC were stimulated weekly with HAdV-5/DC and responses were examined after each stimulation. We also tested HAdV-5 neutralizing antibody levels and natural killer (NK) cell and regulatory T cell (Treg) activation and expansion in vitro. Results HAdV-5/DC rapidly induced a high frequency of type 1 cytokine producing HAdV-5-specific CD8+ and CD4+ T cells. IFNγ and TNFα-producing T cells predominate. Those with pre-existing cellular memory to HAdV-5 had more robust responses to the HAdV-5 as well as tumor-associated antigens. NK cells are activated while Treg are only minimally and transiently expanded. Conclusions This study demonstrates that HAdV-5/DC promote strong type I cellular immunity to viral vector-derived antigens as well as to the encoded tumor antigens. The cytokine and chemokine milieu produced by HAdV-5/DC and the activated HAdV-5-specific T cells may enhance responses to encoded tumor antigens as well. These properties make HAdV-5/DC a cancer vaccine capable of activating type 1 virus and tumor antigen-specific immunity in a cooperative way.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700