Ambient synthesis, characterization, and electrochemical activity of LiFePO4 nanomaterials derived from iron phosphate intermediates
详细信息    查看全文
  • 作者:Jonathan M. Patete ; Megan E. Scofield ; Vyacheslav Volkov…
  • 关键词:ambient synthesis ; template synthesis ; cathode material ; lithium iron phosphate ; nanostructures
  • 刊名:Nano Research
  • 出版年:2015
  • 出版时间:August 2015
  • 年:2015
  • 卷:8
  • 期:8
  • 页码:2573-2594
  • 全文大小:2,833 KB
  • 参考文献:[1]Padhi, A. K.; Nanjundaswamy, K. S.; Masquelier, C.; Okada, S.; Goodenough, J. B. Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates. J. Electrochem. Soc. 1997, 144, 1609-613.View Article
    [2]Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B. Phospho-olivines as positive electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 1997, 144, 1188-194.View Article
    [3]Sides, C. R.; Croce, F.; Young, V. Y.; Martin, C. R.; Scrosati, B. A high-rate, nanocomposite LiFePO4/carbon cathode. Electrochem. Solid-State Lett. 2005, 8, A484–A487.View Article
    [4]Huang, X. J.; Yan, S. J.; Zhao, H. Y.; Zhang, L.; Guo, R.; Chang, C. K.; Kong, X. Y.; Han, H. B. Electrochemical performance of LiFePO4 nanorods obtained from hydrothermal process. Mater. Charact. 2010, 61, 720-25.View Article
    [5]Chung, S. Y.; Bloking, J. T.; Chiang, Y. M. Electronically conductive phospho-olivines as lithium storage electrodes. Nat. Mater. 2002, 1, 123-28.View Article
    [6]Xu, B.; Qian, D.; Wang, Z.; Meng, Y. S. Recent progress in cathode materials research for advanced lithium ion batteries. Mater. Sci. Eng.: R: Rep. 2012, 73, 51-5.View Article
    [7]Ellis, B.; Kan, W. H.; Makahnouk, W. R. M.; Nazar, L. F. Synthesis of nanocrystals and morphology control of hydrothermally prepared LiFePO4. J. Mater. Chem. 2007, 17, 3248-254.View Article
    [8]Whittingham, M. S. Lithium batteries and cathode materials. Chem. Rev. 2004, 104, 4271-302.View Article
    [9]Yi, T. F.; Li, X. Y.; Liu, H.; Shu, J.; Zhu, Y. R.; Zhu, R. S. Recent developments in the doping and surface modification of LiFePO4 as cathode material for power lithium ion battery. Ionics 2012, 18, 529-39.View Article
    [10]Lee, K. T.; Jeong, S.; Cho, J. Roles of surface chemistry on safety and electrochemistry in lithium ion batteries. Acc. Chem. Res. 2013, 46, 1161-170.View Article
    [11]Lee, M. H.; Kim, T. H.; Kim, Y. S.; Song, H. K. Precipitation revisited: Shape control of LiFePO4 nanoparticles by combinatorial precipitation. J. Phys. Chem. C 2011, 115, 12255-2259.View Article
    [12]Zheng, J. C.; Li, X. H.; Wang, Z. X.; Guo, H. J.; Zhou, S. Y. LiFePO4 with enhanced performance synthesized by a novel synthetic route. J. Power Sources 2008, 184, 574-77.View Article
    [13]Franger, S.; Le Cras, F.; Bourbon, C.; Rouault, H. Comparison between different LiFePO4 synthesis routes and their influence on its physico-chemical properties. J. Power Sources 2003, 119-21, 252-57.View Article
    [14]Arnold, G.; Garche, J.; Hemmer, R.; Str?bele, S.; Vogler, C.; Wohlfahrt-Mehrens, A. Fine-particle lithium iron phosphate LiFePO4 synthesized by a new low-cost aqueous precipitation technique. J. Power Sources 2003, 119-21, 247-51.View Article
    [15]Prosini, P. P.; Carewska, M.; Scaccia, S.; Wisniewski, P.; Passerini, S.; Pasquali, M. A new synthetic route for preparing LiFePO4 with enhanced electrochemical performance. J. Electrochem. Soc. 2002, 149, A886–A890.View Article
    [16]Kim, J. K.; Choi, J. W.; Chauhan, G. S.; Ahn, J. H.; Hwang, G. C.; Choi, J. B.; Ahn, H. J. Enhancement of electrochemical performance of lithium iron phosphate by controlled sol-gel synthesis. Electrochim. Acta 2008, 53, 8258-264.View Article
    [17]Hwang, B. J.; Hsu, K. F.; Hu, S. K.; Cheng, M. Y.; Chou, T. C.; Tsay, S. Y.; Santhanam, R. Template-free reverse micelle process for the synthesis of a rod-like LiFePO4/C composite cathode material for lithium batteries. J. Power Sources 2009, 194, 515-19.View Article
    [18]Saravanan, K.; Balaya, P.; Reddy, M. V.; Chowdari, B. V. R.; Vittal, J. J. Morphology controlled synthesis of LiFePO4/C nanoplates for Li-ion batteries. Energ. Environ. Sci. 2010, 3, 457-63.View Article
    [19]Chen, Z. Y.; Zhu, W.; Zhu, H. L.; Zhang, J. L.; Li, Q. F. Electrochemical performances of LiFePO4/C composites prepared by molten salt method. T. Nonferr. Metal. Soc. 2010, 20, 809-13.View Article
    [20]Liu, X. H.; Wang, J. Q.; Zhang, J. Y.; Yang, S. R. Fabrication and characterization of LiFePO4 nanotubes by a sol-gel-AAO template process. Chinese J. Chem. Phys. 2006, 19, 530-34.View Article
    [21]Wang, G. X.; Shen, X. P.; Yao, J. One-dimensional nanostructures as electrode materials for lithium-ion batteries with improved electrochemical performance. J. Power Sources 2009, 189, 543-46.View Article
    [22]Teng, F.; Santhanagopalan, S.; Lemmens, R.; Geng, X.; Patel, P.; Meng, D. D. In situ growth of LiFePO4 nanorod arrays under hydrothermal condition. Solid State Sci. 2010, 12, 952-55.View Article
    [23]Zhu, C. B.; Yu, Y.; Gu, L.; Weichert, K.; Maier, J. Electrospinning of highly electroactive carbon-coated single-crystalline LiFePO4 nanowires. Angew. Chem. Inter. Ed. 2011, 50, 6278-282.View Article
    [24]Koenigsmann, C.; Wong, S. S. One-dimensional noble metal electrocatalysts: A promising structural paradigm for direct methanol fuel cells. Energ. Environ. Sci. 2011, 4, 1161-176.View Article
    [25]Mao, Y. B.
  • 作者单位:Jonathan M. Patete (1)
    Megan E. Scofield (1)
    Vyacheslav Volkov (2)
    Christopher Koenigsmann (1)
    Yiman Zhang (1)
    Amy C. Marschilok (1) (3)
    Xiaoya Wang (1) (4)
    Jianming Bai (5)
    Jinkyu Han (2)
    Lei Wang (1)
    Feng Wang (4)
    Yimei Zhu (2)
    Jason A. Graetz (4)
    Stanislaus S. Wong (1) (2)

    1. Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY, 11794-3400, USA
    2. Condensed Matter Physics and Materials Sciences Department, Building 480, Brookhaven National Laboratory, Upton, NY, 11973, USA
    3. Department of Materials Science and Engineering, State University of New York at Stony Brook, Stony Brook, NY, 11794-2275, USA
    4. Sustainable Energy Technologies Department, Building 815, Brookhaven National Laboratory, Upton, NY, 11973, USA
    5. National Synchrotron Light Source II, Building 741, Brookhaven National Laboratory, Upton, NY, 11973, USA
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chinese Library of Science
    Chemistry
    Nanotechnology
  • 出版者:Tsinghua University Press, co-published with Springer-Verlag GmbH
  • ISSN:1998-0000
文摘
LiFePO4 materials have become increasingly popular as a cathode material due to the many benefits they possess including thermal stability, durability, low cost, and long life span. Nevertheless, to broaden the general appeal of this material for practical electrochemical applications, it would be useful to develop a relatively mild, reasonably simple synthesis method of this cathode material. Herein, we describe a generalizable, 2-step methodology of sustainably synthesizing LiFePO4 by incorporating a template-based, ambient, surfactantless, seedless, U-tube protocol in order to generate size and morphologically tailored, crystalline, phase-pure nanowires. The purity, composition, crystallinity, and intrinsic quality of these wires were systematically assessed using transmission electron microscopy (TEM), high-resolution TEM (HRTEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), selected area electron diffraction (SAED), energy dispersive analysis of X-rays (EDAX), and high-resolution synchrotron XRD. From these techniques, we were able to determine that there is an absence of any obvious defects present in our wires, supporting the viability of our synthetic approach. Electrochemical analysis was also employed to assess their electrochemical activity. Although our nanowires do not contain any noticeable impurities, we attribute their less than optimal electrochemical rigor to differences in the chemical bonding between our LiFePO4 nanowires and their bulk-like counterparts. Specifically, we demonstrate for the first time experimentally that the Fe-O3 chemical bond plays an important role in determining the overall conductivity of the material, an assertion which is further supported by recent “first-principles-calculations. Nonetheless, our ambient, solution-based synthesis technique is capable of generating highly crystalline and phase-pure energy-storage-relevant nanowires that can be tailored so as to fabricate different sized materials of reproducible, reliable morphology.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700