Transformation optics applied to van der Waals interactions
详细信息    查看全文
  • 作者:Rongkuo Zhao ; Yu Luo ; J. B. Pendry
  • 关键词:van der Waals forces ; Transformation optics ; Nonlocality ; Plasmonics
  • 刊名:Chinese Science Bulletin
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:61
  • 期:1
  • 页码:59-67
  • 全文大小:3,438 KB
  • 参考文献:1.Israelachvili JN (2011) Intermolecular and surface forces. Academic Press, Burlington
    2.London F (1937) The general theory of molecular forces. Trans Faraday Soc 33:8b–26CrossRef
    3.Casimir HBG, Polder D (1948) The influence of retardation on the London—van der Waals forces. Phys Rev 3:360CrossRef
    4.Casimir HBG (1948) On the attraction between two perfectly conducting plates. Proc K Ned Akad Wet 51:793
    5.Dzyaloshinskii IE, Lifshitz EM, Pitaevskii LP (1961) General theory of van der Waals’ forces. Sov Phys Usp 4:153CrossRef
    6.Delrio FW, de Boer MP, Knapp JA et al (2005) The role of van der Waals forces in adhesion of micromachined surfaces. Nat Mater 4:629CrossRef
    7.Mo Y, Turner KT, Szlufarska I (2009) Friction laws at the nanoscale. Nature 457:1116CrossRef
    8.Zhao R, Manjavacas A, García de Abajo FJ et al (2012) Rotational quantum friction. Phys Rev Lett 109:123604CrossRef
    9.Hiemenz PC, Rajagopalan R (1997) Principles of colloid and surface chemistry. Marcel Dekker, New York
    10.Min Y, Akbulut M, Kristiansen K et al (2008) The role of interparticle and external forces in nanoparticle assembly. Nat Mater 7:527CrossRef
    11.Autumn K, Liang YA, Hsieh ST et al (2000) Adhesive force of a single gecko foot-hair. Nature 405:681CrossRef
    12.Hsu PY, Ge L, Li X et al (2011) Direct evidence of phospholipids in gecko footprints and spatula-substrate contact interface detected using surface-sensitive spectroscopy. J R Soc Interface 9:657–664CrossRef
    13.Kesel AB, Martin A, Seidl T (2004) Getting a grip on spider attachment: an AFM approach to microstructure adhesion in arthropods. Smart Mater Struct 13:512–518CrossRef
    14.Hamaker HC (1937) The London—van der Waals attraction between spherical particles. Physica 4:1058CrossRef
    15.Deriagin BV, Abrikosova II, Lifshitz EM (1956) Direct measurement of molecular attraction between solids separated by a narrow gap. Q Rev Chem Soc 10:295CrossRef
    16.Emig T, Hanke A, Golestanian R et al (2001) Probing the strong boundary shape dependence of the Casimir force. Phys Rev Lett 87:260402CrossRef
    17.Emig T, Jaffe RL, Kardar M et al (2006) Casimir interaction between a plate and a cylinder. Phys Rev Lett 96:080403CrossRef
    18.Emig T, Graham N, Jaffe RL et al (2007) Casimir forces between arbitrary compact objects. Phys Rev Lett 99:170403CrossRef
    19.Maghrebia MF, Rahi SJ, Emig T et al (2010) Analytical results on Casimir forces for conductors with edges and tips. Proc Natl Acad Sci USA 108:6867–6871CrossRef
    20.Lambrecht A, Marachevsky VN (2008) Casimir interaction of dielectric gratings. Phys Rev Lett 101:160403CrossRef
    21.Johnson SG (2011) Numerical methods for computing Casimir interactions. In: Dalvit D, Milonni P, Roberts D et al (eds) Casimir physics, vol 834., Lecture Notes in PhysicsSpringer, Berlin, pp 175–218CrossRef
    22.Rodriguez AW, Capasso F, Johnson SG (2011) The Casimir effect in microstructured geometries. Nat Photonics 5:211–221CrossRef
    23.McPhedran RC, Perrins WT (1981) Electrostatic and optical resonances of cylinder pairs. Appl Phys 24:311CrossRef
    24.García-Vidal FJ, Pendry JB (1996) Collective theory for surface enhanced raman scattering. Phys Rev Lett 77:1163CrossRef
    25.Canaguier-Durand A, Ingold GL, Jaekel MT et al (2012) Classical Casimir interaction in the plane–sphere geometry. Phys Rev A 85:052501CrossRef
    26.McCauley AP, Reid MTH, Krüger M et al (2012) Modeling near-field radiative heat transfer from sharp objects using a general three-dimensional numerical scattering technique. Phys Rev B 85:165104CrossRef
    27.Fernández-Domínguez AI, Wiener A, García-Vidal FJ et al (2012) Transformation-optics description of nonlocal effects in plasmonic nanostructures. Phys Rev Lett 108:106802CrossRef
    28.Boardman AD (1982) Electromagnetic surface modes. Wiley, New York
    29.Podgornik R, Cevc G, Zeks B (1987) Solvent structure effects in the macroscopic theory of van der Waals forces. J Chem Phys 87:5957–5967CrossRef
    30.Svetovoy VB (2008) Application of the Lifshitz theory to poor conductors. Phys Rev Lett 101:163603CrossRef
    31.Esquivel-Sirvent R, Schatz GC (2012) Spatial nonlocality in the calculation of Hamaker coefficients. J Phys Chem C 116:420–424CrossRef
    32.Davies B (1972) Calculation of van der Waals forces from dispersion relations. Chem Phys Lett 16:388–390CrossRef
    33.Obcemea CH (1987) Free energy and dispersion forces via response functions. Int J Quantum Chem 31:113–117CrossRef
    34.Intravaia F, Behunin R (2012) Casimir effect as a sum over modes in dissipative systems. Phys Rev A 86:062517CrossRef
    35.Landau LD, Pitaevskii LP, Lifshitz EM (1984) Electrodynamics of continuous media. Elsevier, Butterworth-Heinemann
    36.Parsegian VA (2006) Van der Waals forces—a handbook for biologists, chemists, engineers, and physicists. Cambridge University Press, Cambridge
    37.Munday JN, Capasso F, Parsegian VA (2009) Measured long-range repulsive Casimir–Lifshitz forces. Nature 457:170–173CrossRef
    38.Kenneth O, Klich I, Mann A et al (2002) Repulsive Casimir forces. Phys Rev Lett 89:033001CrossRef
    39.Zhao R, Zhou J, Koschny T et al (2009) Repulsive Casimir force in chiral metamaterials. Phys Rev Lett 103:103602CrossRef
    40.Grushin AG, Cortijo A (2011) Tunable Casimir repulsion with three-dimensional topological insulators. Phys Rev Lett 106:020403CrossRef
    41.Ward AJ, Pendry JB (1996) Refraction and geometry in Maxwell’s equations. J Mod Opt 43:773CrossRef
    42.Shyroki DM (2003) Note on transformation to general curvilinear coordinates for Maxwell’s curl equations. arXiv:physics/0307029
    43.Pendry JB, Aubry A, Smith DR et al (2012) Transformation optics and subwavelength control of light. Science 337:549CrossRef
    44.Pendry JB, Luo Y, Zhao R (2015) Transforming the optical landscape. Science 348:521CrossRef
    45.Post EG (1962) Formal structure of electromagnetics: general covariance and electromagnetics. Interscience Publishers, New York
    46.Vasic B, Isic G, Gajic R et al (2011) Controlling electromagnetic fields with graded photonic crystals in metamaterial regime. Opt Express 18:20321–20333CrossRef
    47.Luo Y, Zhao R, Fernández-Domínguez AI et al (2013) Harvesting light with transformation optics. Sci China Inf Sci 56:120401
    48.Zhao R, Luo Y, Fernández-Domínguez AI et al (2013) Description of van der Waals interactions using transformation optics. Phys Rev Lett 111:033602CrossRef
    49.Pendry JB, Fernández-Domínguez AI, Luo Y et al (2013) Capturing photons with transformation optics. Nat Phys 9:518–522CrossRef
    50.Garcia de Abajo FJ (2008) Nonlocal effects in the plasmons of strongly interacting nanoparticles, dimers, and waveguides. J Phys Chem C 112:17983–17987CrossRef
    51.McMahon JM, Gray SK, Schatz GC (2009) Nonlocal optical response of metal nanostructures with arbitrary shape. Phys Rev Lett 103:097403CrossRef
    52.Mortensen NA, Raza S, Wubs M et al (2014) A generalized non-local optical response theory for plasmonic nanostructures. Nat Commun 5:3809
    53.Luo Y, Fernández-Domínguez AI, Wiener A et al (2013) Surface plasmons and nonlocality: a simple model. Phys Rev Lett 111:093901CrossRef
    54.Luo Y, Zhao R, Pendry JB (2014) van der Waals interactions at the nanoscale: the effects of nonlocality. Proc Natl Acad Sci USA 111:18422–18427CrossRef
    55.Olmon RL, Slovick B, Johnson TW et al (2012) Optical dielectric function of gold. Phys Rev B 86:235147CrossRef
    56.Palik EW (1985) Handbook of optical constants of solids I. Academic Press, San Diego
    57.Kraft M, Pendry JB, Maier SA et al (2014) Transformation optics and hidden symmetries. Phys Rev B 89:245125CrossRef
    58.Fernández-Domínguez AI, Maier SA, Pendry JB (2010) Collection and concentration of light by touching spheres: a transformation optics approach. Phys Rev Lett 105:266807CrossRef
    59.Polder D, van Hove M (1971) Theory of radiative heat transfer between closely spaced bodies. Phys Rev B 4:3303CrossRef
    60.Pendry JB (1999) Radiative exchange of heat between nanostructures. J Phys Condens Matter 11:6621CrossRef
  • 作者单位:Rongkuo Zhao (1)
    Yu Luo (2)
    J. B. Pendry (3)

    1. National Science Foundation Nanoscale Science and Engineering Center, University of California, Berkeley, CA, 94720, USA
    2. Centre for OptoElectronics and Biophotonics (OPTIMUS), School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
    3. The Blackett Laboratory, Department of Physics, Imperial College London, London, SW7 2AZ, UK
  • 刊物主题:Science, general; Life Sciences, general; Physics, general; Chemistry/Food Science, general; Earth Sciences, general; Engineering, general;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1861-9541
文摘
The van der Waals force originates from the electromagnetic interaction between quantum fluctuation-induced charges. It is a ubiquitous but subtle force which plays an important role and has a wide range of applications in surface related phenomena like adhesion, friction, and colloidal stability. Calculating the van der Waals force between closely spaced metallic nanoparticles is very challenging due to the strong concentration of electromagnetic fields at the nanometric gap. Especially, at such a small length scale, the macroscopic description of the dielectric properties no longer suffices. The diffuse nonlocal nature of the induced surface electrons which are smeared out near the boundary has to be considered. Here, we review the recent progress on using three-dimensional transformation optics to study the van der Waals forces between closely spaced nanostructures. Through mapping a seemingly asymmetric system to a more symmetric counterpart, transformation optics enables us to look into the behavior of van der Waals forces at extreme length scales, where the effect of nonlocality is found to dramatically weaken the van der Waals interactions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700