Quantitative determination of raw and functionalized carbon nanotubes for the antibacterial studies
详细信息    查看全文
  • 作者:Rizwan Wahab (1)
    Farheen Khan (2)
    Mohd. Rashid (2)
    Neha Kaushik (3)
    Hyung-Shik Shin (4)
  • 刊名:Journal of Materials Science
  • 出版年:2014
  • 出版时间:June 2014
  • 年:2014
  • 卷:49
  • 期:12
  • 页码:4288-4296
  • 全文大小:2,529 KB
  • 参考文献:1. Karunakaran C, Gomathisankar P, Manikandan G (2010) Preparation and characterization of anti microbial Ce-doped ZnO nanoparticles for photocatalytic detoxification of cyanide. J Colloid Interface Sci 352(1):68 CrossRef
    2. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346-353 CrossRef
    3. Wahab R, Kim YS, Mishra A, Yun SIl, Shin HS (2010) Formation of ZnO micro-flowers prepared via solution process and their antibacterial activity. Nanoscale Res Lett 5:1675-681
    4. Liang M, Jin F, Liu R, Su R, Qi W, Yu Y, Wang L, He Z (2013) Enhanced electrochemical detection performance of multiwall carbon nanotubes functionalized by aspartame. J Mater Sci 48(16):5624-632. doi:10.1007/s10853-013-7357-y CrossRef
    5. Mecklenburg M, Schuchardt A, Mishra YK, Kaps S, Adelung R, Lotnyk A, Kienle L, Schulte K (2012) Aerographite: ultra lightweight, flexible nanowall, carbon microtube material with outstanding mechanical performance. Adv Mater 24:3486-490
    6. Parlak O, Turner APF, Tiwari A (2014) On/off-switchable zipper-like bioelectronics on a graphene interface. Adv Mater 26(3):482-86 CrossRef
    7. Tiwari A, Sharma Y, Hattori S, Terada D, Sharma AK, Turner AP, Kobayashi H (2013) Influence of poly (n-isopropylacrylamide)-CNT-polyaniline three-dimensional electrospun microfabric scaffolds on cell growth and viability. Biopolymers 99(5):334-41 CrossRef
    8. Shaffer MSP, Windle AH (1999) Fabrication and characterization of carbon nanotube/poly(vinyl alcohol) composites. Adv Mater 11(11):937-41 CrossRef
    9. Xie XL, Mai YW, Zhou XP (2005) Dispersion and alignment of carbon nanotubes in polymer matrix a review. Mat Sci Eng R R49:89-12 CrossRef
    10. Chen J, Rao AM, Lyuksyutov S, Itkis ME, Hamon MA, Hu H, Cohn RW, Eklund PC, Colbert DT, Smalley RE, Haddon RC (2001) Dissolution of full-length single-walled carbon nanotubes. J Phys Chem B 105:2525-528 CrossRef
    11. Liu J, Rinzler AG, Dai H, Hafner JH, Bradley RK, Boul PJ, Lu A, Iverson T, Shelimov K, Huffman CB, Rodriguez-Macias F, Shon YS, Lee TR, Colbert DT, Smalley RE (1998) Fullerene pipes. Science 280(5367):1253-256 CrossRef
    12. Georgakilas V, Tagmatarchis N, Pantarotto D, Bianco A, Briand JP, Prato M (2002) Amino acid functionalisation of water soluble carbon nanotubes. Chem Commun 24:3050-051 CrossRef
    13. Tasis D, Tagmatarchis N, Georgakilas V, Prato M (2003) Soluble carbon nanotubes. Chemistry 9(17):4000-008 CrossRef
    14. Robers M, Rensink IJAM, Hack CE, Aarden CE, Reutelingsperger CPM, Glatz JFC, Hermens WT (1999) A new principle for rapid immunoassay of proteins based on in situ precipitate-enhanced ellipsometry. Biophys J 76:2769-776 CrossRef
    15. McNeil CJ, Athey D, Ho WO (1995) Direct electron transfer bioelectronic interfaces: application to clinical analysis. Biosens Bioelectron 10:75-3 CrossRef
    16. Neelgund GM, Oki A (2011) Deposition of silver nanoparticles on dendrimer functionalized multi walled carbon nanotubes: synthesis, characterization and antimicrobial activity. J Nanosci Nanotechnol 11(4):3621-629 CrossRef
    17. Brown CD, Vega-Montoto L, Wentzell PD (2000) Derivative preprocessing and optimal corrections for baseline drift in multivariate calibration. Appl Spectrosc 54:1055-068
    18. Barnes RJ, Dhanoa MS, Lister SJ (1989) Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra. Appl Spectrosc 43:772-77 CrossRef
    19. Martens H, Nielsen JP, Engelsen SB (2003) Light scattering and light absorbance separated by extended multiplicative signal correction. Application to near-infrared transmission analysis of powder mixtures. Anal Chem 75(3):394-04 CrossRef
    20. Pedersen DK, Martens H, Nielsen JP, Engelsen SB (2002) Near-infrared absorption and scattering separated by extended inverted signal correction (EISC): analysis of near-infrared transmittance spectra of single wheat seeds. Appl Spectrosc 56(9):1206-214 CrossRef
    21. Long JR, Gregoriou VG, Gemperline PJ (1990) Spectroscopic calibration and quantitation using artificial neural networks. Anal Chem 62(17):1791-797 CrossRef
    22. Chen T, Morris J, Martin E (2007) Gaussian process regression for multivariate spectroscopic calibration. Chemometr Intell Lab Syst 87(1):59-7 CrossRef
    23. Yin Q, Wang L, Sun M (2012) Determination of copper by spectrophotometry with carbon nanotubes. Int J Electrochem Sci 7:10994-1000
    24. Wahab R, Ansari SG, Kim YS, Mohanty TR, Hwang IH, Shin HS (2009) Immobilization of DNA on nano hydroxyapatite and their interaction with carbon nanotubes. Synt Metals 159:238-45 CrossRef
    25. Kim YS, Cho JH, Ansari SG, Kim HIl, Dar MA, Seo HK, Kim GS, Lee DS, Khang G, Shin HS (2006) Immobilization of avidin on the functionalized carbon nanotubes. Synth Met 156:938-43
    26. Wahab R, Mishra A, Yun SIl, Kim YS, Shin HS (2010) Antibacterial activity of ZnO nanoparticles prepared via non-hydrolytic solution route. Appl Microbiol Biotech 87(5):1917-925
    27. Sun YP, Fu K, Lin Y, Huang W (2002) Functionalized carbon nano-tubes: properties and applications. Acc Chem Res 35:1096-104 CrossRef
    28. Fu G, Vary PS, Lin CT (2005) Anatase TiO2 nanocomposites for antimicrobial coatings. J Phys Chem B 109:8889-898 CrossRef
    29. Stoimenov PK, Klinger RL, Marchin GL, Klabunde KJ (2002) Metal oxide nanoparticles as bactericidal agents. Langmuir 18:6679-686 CrossRef
    30. Kang S, Mauter MS (2008) Physicochemical determinants of multiwalled carbon nanotube bacterial cytotoxicity. Environ Sci Technol 42(19):7528-534 CrossRef
    31. Young YF, Lee HJ, Shen YS, Tseng SH, Lee CY, Tai NH, Chang HY (2012) Toxicity mechanism of carbon nanotubes on / Escherichia coli. Mater Chem Phys 134:279-86 CrossRef
    32. Li WR, Xie BX, Shi QS, Zeng HY, Ou-Yang YS, Chen YB (2010) Antibacterial activity and mechanism of silver nanoparticles on / Escherichia coli. Appl Microbiol Biotechnol 85(4):1115-122 CrossRef
    33. Li Kang, Xiaohua Z, Yong L (2012) Gold nanoparticles/carbon nanotubes composite film modified glassy carbon electrode determination of meclofenoxate hydrochloride. Pharmacol Pharm 3:275-80 CrossRef
    34. International Conference on Harmonisation, Harmonized Tripartity Guideline, Validation of Analytical Procedures. November (2005). Text and Methodology, Q2 (R1) www.ich.Org
    35. Baghbamidi SE, Beitollahi H, Karimi-Maleh H, Soltani-Nejad S, Vahhab Soltani-Nejad, Roodsaz S (2012) Modified carbon nanotube paste electrode for voltammetric determination of carbidopa, folic acid, and tryptophan. J Anal Methods Chem 2012:305872
    36. Yanez-Sedeno P, Riu J, Pingarron MJ, Rius FX (2010) Electrochemical sensing based on carbon nanotubes. Trends Anal Chem 29(9):939-53 CrossRef
  • 作者单位:Rizwan Wahab (1)
    Farheen Khan (2)
    Mohd. Rashid (2)
    Neha Kaushik (3)
    Hyung-Shik Shin (4)

    1. College of Science, Department of Zoology, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
    2. Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, U.P., India
    3. Department of Plasma Biodisplay, Kwangwoon University, Seoul, South Korea
    4. Energy Materials and Surface Science Laboratory, Solar Energy Research Center, School of Chemical Engineering, Chonbuk National University, Jeonju, 561-756, South Korea
  • ISSN:1573-4803
文摘
The UV–visible spectrophotometric method has been described the study of raw carbon nanotubes (R-MWCNTs) and functionalized multiwall carbon nanotubes (F-MWCNTs) for the control of bacterial growth by using validated analytical techniques. The absorption spectra of functionalized carbon nanotubes (F-MWCNTs) and raw carbon nanotubes (R-MWCNTs) show maximum absorbance at λ max 600?nm. The linear relationship was found between absorbance and concentration of R-MWCNTs and F-MWCNTs in the range of 0.25-.0?μg?mL?. The linear regression equation was evaluated by statistical treatment of calibration data and gives the value of correlation coefficient for F-MWCNTs (0.9999) and R-MWCNTs (0.9993), which indicate excellent linearity. The Optical and regression characteristics of the proposed method were found apparent molar absorptivity, limits of detection (LOD), and limit of quantitation (LOQ) for R-MWCNTs and F-MWCNTs (5.75?×?102: 8.25?×?102?L?mol??cm?), (0.052: 0.018?μg?mL?), and (0.055: 0.158?μg?mL?), respectively. The validity of the proposed method was checked by precision, accuracy, linearity, limits of detection (LOD), and limit of quantitation (LOQ). The RSD (%) and quantitative recoveries (%) were obtained (0.026-.0086) and (100.34 and 100.71) for R-MWCNTs: for F-MWCNTs by UV–visible spectrophotometric, respectively.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700