Cadmium inhibitory action leads to changes in structure of ferredoxin:NADP+ oxidoreductase
详细信息    查看全文
  • 作者:Joanna Grzyb (12) jgrzyb@ifpan.edu.pl
    Mariusz Gago? (34) mariusz.gagos@up.lublin.pl
    Beata My?liwa-Kurdziel (1) b.mysliwa-kurdziel@uj.edu.pl
    Monika Bojko (1) monika.bojko@uj.edu.pl
    Wies?aw I. Gruszecki (5) wieslaw.gruszecki@umcs.pl
    Andrzej Waloszek (1) andrzej.waloszek@uj.edu.pl
    Kazimierz Strza?ka (1) strzalka@mol.uj.edu.pl
  • 关键词:Ferredoxin ; NADP+ oxidoreductase – Cadmium – Heavy metals – Secondary structure – Tertiary structure
  • 刊名:Journal of Biological Physics
  • 出版年:2012
  • 出版时间:June 2012
  • 年:2012
  • 卷:38
  • 期:3
  • 页码:415-428
  • 全文大小:560.5 KB
  • 参考文献:1. Benz, J.P., Lintala, M., Soll, J., Mulo, P., B?lter, B.: A new concept for ferredoxin:NADP(H) oxidoreductase binding to plant thylakoids. Trends Plant Sci. 15, 6-8-613 (2010)
    2. Mulo, P.: Chloroplast-targeted ferredoxin:NADP+ oxidoreductase (FNR): structure, function and location. Biochim. Biophys. Acta 1807, 927–934 (2011)
    3. Bruns, C.M., Karplus, P.A.: Refined crystal structure of spinach ferredoxin reductase at 17 ? resolution: oxidized, reduced and 2′-phospho-5′-AMP bound states. J. Mol. Biol. 247, 125–145 (1995)
    4. Aliverti, A., Bruns, C.M., Pandini, V.E., Karplus, P.A., Vanoni, M.A., Curti, B., Zanetti, G.: Involvement of serine 96 in the catalytic mechanism of ferredoxin:NADP+ reductase: structure-function relationship as studied by site-directed mutagenesis and X-ray crystallography. Biochemistry 34, 8371–8379 (1995)
    5. Kurisu, G., Kusunoki, M., Katoh, E., Yamazaki, T., Teshima, K., Onda, Y., Kimata-Ariga, Y., Hase, T.: Structure of the electron transfer complex between ferredoxin and ferredoxin:NADP+ reductase. Nat. Struct. Biol. 8, 117–121 (2001)
    6. Grzyb, J., Waloszek, A., Bojko, M., Strza?ka, K.: Ferredoxin:NADP+ oxidoreductase as a target of Cd2+ inhibitory action—biochemical studies. Phytochemistry 72, 14–20 (2011)
    7. Donato, H.J., Mani, R.S., Kay, C.M.: Spectral studies on the cadmium-ion binding properties of bovine brain S-100b protein. Biochem. J. 276, 13–18 (1991)
    8. Olmo, R., Blanco, M.D., Teijón, C., del Socorro, J.M., Teijón, J.M.: Studies of cadmium binding to hexokinase: structural and functional implications. J. Inorg. Biochem. 89, 107–114 (2002)
    9. Goormaghtigh, E., Gasper, R., Bénard, A., Goldsztein, A., Raussens, V.: Protein secondary structure content in solution, film and tissues: redundancy and complementarity of the information content in circular dichroism, transmission and ATR FTIR spectra. Biochim. Biophys. Acta 1794, 1332–1343 (2009)
    10. Yoshida, S., Toshitsugu, Y., Shirabe, K., Takeshita, M.: Analyses by Fourier transform infrared spectroscopies of protein structure of soluble NADH cytochrome b5 reductase prepared by site-directed mutagenesis: comparison with ferredoxin:NADP+ reductase. Biospectroscopy 3, 215–223 (1997)
    11. Grzyb, J., Gagos, M., Gruszecki, W.I., Bojko, M., Strza?ka, K.: The interaction of ferredoxin:NADP+ oxidoreductase with model membranes. Biochim. Biophys. Acta 1778, 133–142 (2008)
    12. Lakowicz, J.R.: Principles of Fluorescence Spectroscopy. Kluwer Academic/Plenum Publishers, New York (1999)
    13. Shin, M.: Complex formation by ferredoxin:NADP+ reductase with ferredoxin or NADP+. Biochim. Biophys. Acta 292, 13–19 (1973)
    14. Aliverti, A., Deng, Z., Ravasi, D., Piubelli, L., Karplus, P.A., Zanetti, G.: Probing of the function of the invariant glutamyl residue 312 in spinach ferredozin-NADP+ reductase. J. Biol. Chem. 51, 34008–34015 (1998)
    15. Zanetti, G., Cidaria, D., Curti, B.: Preparation of apoprotein from spinach ferredoxin:NADP+ reductase Studies on the resolution process and characterization of the FAD reconstituted holoenzyme. Eur. J. Biochem. 126, 453–458 (1982)
    16. Maeda, M., Hamada, D., Hoshino, M., Onda, Y., Hase, T., Goto, Y.: Partially folded structure of flavin adenine dinucleotide-depleted ferredoxin:NADP+ reductase with residual NADP+ binding domain. J. Biol. Chem. 277, 17101–17107 (2002)
    17. Bojko, M., Wi?ckowski, S.: Diaphorase activity of ferredoxin:NADP+ oxidoreductase in the presence of dibromothymoquinone. Phytochemistry 40, 661–665 (1995)
    18. Mysliwa-Kurdziel, B., Barthelemy, X., Strza?ka, K., Franck, F.: The early stages of photosystem II assembly monitored by measurements of fluorescence lifetime, fluorescence induction and isoelectric isoelectrofocusing of chlorophyll-proteins in barley etiochloroplasts. Plant Cell Physiol. 38, 1187–1196 (1997)
    19. Silvestro, L., Axelsen, P.H.: Infrared spectroscopy of supported lipid monolayer, bilayer and multibilayer membranes. Chem. Phys. Lipids 96, 69–80 (1998)
    20. Silvestro, L., Axelsen, P.H.: Membrane-induced folding of cecropin A. Biophys. J. 79, 1465–1477 (2000)
    21. Sreerama, N., Woody, R.W.: Estimation of protein secondary structure from CD spectra: comparison of CONTIN, SELCON and CDSSTR methods with an expanded reference set. Analyt. Biochem. 282, 252–260 (2000)
    22. Goormaghtigh, E., Cabiaux, V., Ruyssachaert, J.M.: Secondary structure and dosage of soluble and membrane proteins by attenuated total reflection Fourier-transform infrared spectroscopy on hydrated films. Eur. J. Biochem. 193, 409–420 (1990)
    23. Wi, S., Pancoska, P., Keiderling, T.A.: Prediction of protein secondary structure using factor analysis on Fourier transform infrared spectra: effect of Fourier self-deconvolution of the amide I and amide II bands. Biospectroscopy 4, 93–106 (1998)
    24. Medina, M., Luquite, A., Tejero, J., Hermoso, J., Mayoral, T., Sanz-Aparicio, J., Grever, K., Gomez-Moreno, C.: Probing the determinants of coenzyme specificity in ferredoxin:NADP+ reductase by site-directed mutagenesis. J. Biol. Chem. 276, 11902–11912 (2001)
    25. Eftink, M.R.: Fluorescence techniques for studying protein structure. Methods Biochem. Anal. 35, 127–205. Analys. 35, 117–129 (1990)
    26. Vivian, J.T., Callis, P.R.: Mechanism of tryptophan fluorescence shifts in proteins. Biophys. J. 80, 2093–2109 (2001)
    27. Carrillo, N., Ceccarelli, F.A.: Open questions in ferredoxin:NADP+ reductase catalytic mechanism. Eur. J. Biochem. 270, 1900–1915 (2003)
    28. Mu?oz, A., Laib, F., Petering, D.H., Shaw, C.F.R.: Characterization of the cadmium complex of peptide 49-61: a putative nucleation center for cadmium induced folding in rabbit liver metallothionein IIA. J. Biol. Inorg. Chem. 4, 495–507 (1999)
  • 作者单位:1. Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Krakow, Poland2. Laboratory of Biological Physics, Institute of Physics, PAS, al. Lotników 32/46, 02-668 Warsaw, Poland3. Department of Biophysics, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland4. Department of Cell Biology, Institute of Biology, Maria Curie-Sk?odowska University, 20-033 Lublin, Poland5. Department of Biophysics, Maria Sklodowska-Curie University, Lublin, Poland
  • ISSN:1573-0689
文摘
This study deals with the influence of cadmium on the structure and function of ferredoxin:NADP+ oxidoreductase (FNR), one of the key photosynthetic enzymes. We describe changes in the secondary and tertiary structure of the enzyme upon the action of metal ions using circular dichroism measurements, Fourier transform infrared spectroscopy and fluorometry, both steady-state and time resolved. The decrease in FNR activity corresponds to a gentle unfolding of the protein, caused mostly by a nonspecific binding of metal ions to multiple sites all over the enzyme molecule. The final inhibition event is most probably related to a bond created between cadmium and cysteine in close proximity to the FNR active center. As a result, the flavin cofactor is released. The cadmium effect is compared to changes related to ionic strength and other ions known to interact with cysteine. The complete molecular mechanism of FNR inhibition by heavy metals is discussed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700