Surface Plasmon-Enhanced Nano-photodetector for Green Light Detection
详细信息    查看全文
  • 作者:Lin-Bao Luo ; Kun Zheng ; Cai-Wang Ge ; Yi-Feng Zou ; Rui Lu ; Yuan Wang
  • 关键词:II ; VI group semiconductors ; Surface plasmon ; Electron injection ; Photoresponsivity ; FEM
  • 刊名:Plasmonics
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:11
  • 期:2
  • 页码:619-625
  • 全文大小:3,668 KB
  • 参考文献:1.Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108(2):462–493CrossRef
    2.Nydberg C, Liedberg B, Lind T (1982) Gas detection by means of surface plasmon resonance. Sensors Actuators 3(1):79–88
    3.Liedberg B, Nylander C, Lundstrom I (1983) Surface plasmon resonance for gas detection and biosensing. Sensors Actuators 4(2):299–304CrossRef
    4.Cottat M et al (2013) Localized surface plasmon resonance (LSPR) biosensor for the protein detection. Plasmonics 8:699–704CrossRef
    5.Sepulveda B et al (2009) LSPR-based nanobiosensors. Nano Today 4(3):244–251CrossRef
    6.Luo LB et al (2014) Light trapping and surface plasmon enhanced high-performance NIR photodetector. Sci Rep 4:3914
    7.Beck FJ, Lasanta T, Konstantatos G (2014) Plasmonic Schottky nanojunctions for tailoring the photogeneration profile in thin film solar cells. Adv Opt Mater 2(5):493–500CrossRef
    8.Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9(3):205–213CrossRef
    9.Tan HR et al (2012) Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles. Nano Lett 12(8):4070–4076CrossRef
    10.Xie C et al (2014) Core-shell heterojunction of silicon nanowire arrays and carbon quantum dots for photovoltaic devices and self-driven photodetectors. ACS Nano 8(4):4015–4022CrossRef
    11.Okamoto K et al (2004) Surface-plasmon-enhanced light emitters based on InGaN quantum wells. Nat Mater 3(9):601–605CrossRef
    12.Kock A et al (1990) Strongly directional emission from AlGaAs/GaAs light-emitting diodes. Appl Phys Lett 57(22):2327CrossRef
    13.Berini P (2014) Surface plasmon photodetectors and their applications. Laser Photonics Rev 8(2):197–220CrossRef
    14.Luo LB et al (2014) The effect of plasmonic nanoparticles on the optoelectronic characteristics of CdTe nanowires. Small 10(13):2645–2652CrossRef
    15.Miao JS et al (2015) High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios. Small 11(8):936–942CrossRef
    16.Oulton RF et al (2010) A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat Photonics 2(8):496–500CrossRef
    17.Gao X et al (2013) Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies. Appl Phys Lett 102(15):151912CrossRef
    18.Tsuboi A, Nakamura K, Kobayashi N (2013) A localized surface plasmon resonance-based multicolor electrochromic device with electrochemically size-controlled silver nanoparticles. Adv Mater 25(23):3197–3201CrossRef
    19.Feng ZY et al (2014) Widely adjustable and quasi-reversible electrochromic device based on core-shell Au-Ag plasmonic nanoparticles. Adv Opt Mater 2(12):11741180
    20.Xiong YJ et al (2012) Solar energy conversion with tunable plasmonic nanostructures for thermoelectric devices. Nanoscale 4(15):4416–4420CrossRef
    21.Jie JS et al (2010) One-dimensional II-VI nanostructures: synthesis, properties and optoelectronic applications. Nano Today 5(4):313–336CrossRef
    22.Zeng LH et al (2013) Monolayer graphene/germanium Schottky junction as high-performance self-driven infrared light photodetector. ACS Appl Mater Interfaces 5(19):9362–9366CrossRef
    23.Wu W, Bonakdar A, Mohseni H (2010) Plasmonic enhanced quantum well infrared photodetector with high detectivity. Appl Phys Lett 96(16):161107CrossRef
    24.Cao YL et al (2011) Single-crystalline ZnTe nanowires for application as high-performance green/ultraviolet photodetector. Opt Express 19(7):6100–6108CrossRef
    25.Wu D et al (2012) Device structure-dependent field-effect and photoresponse performances of p-type ZnTe:Sb nanoribbons. J Mater Chem 22(13):6206–6212CrossRef
    26.Lu JF et al (2015) Improved UV photoresponse of ZnO nanorod arrays by resonant coupling with surface plasmons of Al nanoparticles. Nanoscale 7(8):3396–3403CrossRef
    27.Lou Z et al (2015) High-performance rigid and flexible ultraviolet photodetectors with single-crystalline ZnGa2O4 nanowires. Nano Res 8(7):2162–2169CrossRef
    28.Li L et al (2010) Ultrahigh-performance solar-blind photodetector based on individual single-crystalline In2Ge2O7 nanobelts. Adv Mater 22(45):5145–5149CrossRef
    29.Luo LB et al (2015) p-type ZnTe:Ga nanowires: controlled doping and optoelectronic device application. RSC Adv 5(18):13324–13330CrossRef
    30.Luo LB et al (2014) Surface plasmon resonance enhanced highly efficient planar silicon solar cell. Nano Energy 9:112–120CrossRef
    31.Kelly KL et al (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107(3):668–677CrossRef
    32.Zhang Q et al (2011) A highly active titanium dioxide based visible-light photocatalyst with nonmetal doping and plasmonic metal decoration. Angew Chem Int Ed 50(31):7088–7092CrossRef
    33.Han N et al (2013) Tunable electronic transport properties of metal-cluster-decorated III-V nanowire transistors. Adv Mater 25(32):4445–4451CrossRef
    34.Nie B et al (2013) Monolayer graphene film on ZnO nanorod array for high-performance Schottky junction ultraviolet photodetectors. Small 9(17):2872–2789CrossRef
    35.Wang MZ et al (2013) TiO2 nanotube array/monolayer graphene film Schottky junction ultraviolet light photodetectors. Part Part Syst Charact 30(7):630–636CrossRef
    36.Linic S, Christopher P, Ingram DB (2011) Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat Mater 10(12):911–921CrossRef
  • 作者单位:Lin-Bao Luo (1)
    Kun Zheng (1)
    Cai-Wang Ge (1)
    Yi-Feng Zou (1)
    Rui Lu (1)
    Yuan Wang (1)
    Dan-Dan Wang (1)
    Teng-Fei Zhang (1)
    Feng-Xia Liang (2)

    1. School of Electronic Sciences and Applied Physics, Hefei University of Technology, Hefei, Anhui, 230009, People’s Republic of China
    2. School of Materials Science and Engineering and Anhui Provincial Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, Anhui, 230009, People’s Republic of China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Nanotechnology
    Biophysics and Biomedical Physics
    Biochemistry
  • 出版者:Springer US
  • ISSN:1557-1963
文摘
Light manipulation is vitally important for one-dimensional semiconductor nanostructure-based photodetectors which have great potential in future optoelectronic circuits, imaging technique, and light-wave communication. In this paper, we reported a plasmonic gold nanoparticle (AuNP)-decorated nano-photodetector for green light sensing. It is found that the as-fabricated device exhibits obvious increase in light absorption in the range from 400 to 550 nm, after functionalization of plasmonic AuNPs. Further device performance analysis reveals that the photocurrent of the plasmonic photodetector was increased by more than sevenfold, compared with that without coating. What is more, both responsivity and detectivity are found to increase as well. According to theoretical simulation based on the finite element method (FEM), the observed enhancement in device performance can be attributed to the surface plasmon-induced direct electron injection from the metal nanoparticles to the semiconductor nanostructures.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700