Electrostatic spray deposition of graphene nanoplatelets for high-power thin-film supercapacitor electrodes
详细信息    查看全文
  • 作者:Majid Beidaghi (1)
    Zhifeng Wang (2)
    Lin Gu (2)
    Chunlei Wang (1) wangc@fiu.edu
  • 关键词:Thin ; film electrodes – ; Electrostatic spray deposition – ; Supercapacitor – ; Graphene – ; High power density
  • 刊名:Journal of Solid State Electrochemistry
  • 出版年:2012
  • 出版时间:October 2012
  • 年:2012
  • 卷:16
  • 期:10
  • 页码:3341-3348
  • 全文大小:322.3 KB
  • 参考文献:1. Conway BE (1997) Electrochemical supercapacitors: scientific fundamentals and technological applications. Kluwer/Plenum, New York
    2. Miller JR, Burke AF (2008) Electrochemical capacitors: challenges and opportunities for real-world applications. Electrochem Soc Interface 1:53–57
    3. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854
    4. JR Miller J, Outlaw RA, Holloway BC (2010) Graphene double-layer capacitor with ac line-filtering performance. Science 329:1637–1639
    5. Pandolfo A, Hollenkamp A (2006) Carbon properties and their role in supercapacitors. J Power Sourc 157:11–27
    6. Obreja V (2008) On the performance of supercapacitors with electrodes based on carbon nanotubes and carbon activated material—a review. Physica E 40:2596–2605
    7. Brownson DAC, Kampouris DK, Banks CE (2011) An overview of graphene in energy production and storage applications. J Power Sourc 196:4873–4885
    8. Wang HW, Hu ZA, Chang YQ, Chen YL, Lei ZQ, Zhang ZY, Yang YY (2010) Facile solvothermal synthesis of a graphene nanosheet–bismuth oxide composite and its electrochemical characteristics. Electrochim Acta 55:8974–8980
    9. Lu T, Zhang Y, Li H, Pan L, Li Y, Sun Z (2010) Electrochemical behaviors of graphene–ZnO and graphene–SnO2 composite films for supercapacitors. Electrochim Acta 55:4170–4173
    10. Wu ZS, Ren W, Wang DW, Li F, Liu B, Cheng HM (2010) High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. ACS Nano 4:5835–5842
    11. Presser V, Zhang L, Niu JJ, McDonough J, Perez C, Fong H, Gogotsi Y (2011) Flexible nano-felts of carbide-derived carbon with ultra-high power handling capability. Adv Energ Mater 1:423–430
    12. Pech D, Brunet M, Durou H, Huang P, Mochalin V, Gogotsi Y, Taberna PL, Simon P (2010) Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat Nanotechnol 5:651–654
    13. Yu A, Roes I, Davies A, Chen Z (2010) Ultrathin, transparent, and flexible graphene films for supercapacitor application. Appl Phys Lett 96:253105
    14. Chen Y, Zhang X, Yu P, Ma Y (2010) Electrophoretic deposition of graphene nanosheets on nickel foams for electrochemical capacitors. J Power Sourc 195:3031–3035
    15. Byon HR, Lee SW, Chen S, Hammond PT, Shao-Horn Y (2010) Thin films of carbon nanotubes and chemically reduced graphenes for electrochemical micro-capacitors. Carbon 49:457–467
    16. Sokolov S, Paul B, Ortel E, Fischer A, Kraehnert R (2011) Template-assisted electrostatic spray deposition as a new route to mesoporous, macroporous, and hierarchically porous oxide films. Langmuir 27:1972–1977
    17. Yu Y, Gu L, Dhanabalan A, Chen CH, Wang C (2009) Three-dimensional porous amorphous SnO2 thin films as anodes for Li-ion batteries. Electrochim Acta 54:7227–7230
    18. Jaworek A, Sobczyk AT (2008) Electrospraying route to nanotechnology: an overview. J Electrost 66:197–219
    19. Kim J, Nam K, Ma S, Kim K (2006) Fabrication and electrochemical properties of carbon nanotube film electrodes. Carbon 44:1963–1968
    20. Han P, Yue Y, Liu Z, Xu W, Zhang L, Xu H, Dong S, Cui G (2011) Graphene oxide nanosheets/multi-walled carbon nanotubes hybrid as an excellent electrocatalytic material towards VO2+/VO2+ redox couples for vanadium redox flow batteries. Energy Environ Sci 4:4710–4717
    21. Gilje S, Han S, Wang M, Wang KL, Kaner RB (2007) A chemical route to graphene for device applications. Nano Lett 7:3394–3398
    22. Chen W, Beidaghi M, Penmatsa V, Bechtold K, Kumari L, Li WZ, Wang C (2010) Integration of carbon nanotubes to C-MEMS for on-chip supercapacitors. IEEE Trans Nanotechnol 9:734–740
    23. Lv W, Tang D-M, He Y-B, You C-H, Shi Z-Q, Chen X-C, Chen C-M, Hou P-X, Liu C, Yang Q-H (2009) Low-temperature exfoliated graphenes: vacuum-promoted exfoliation and electrochemical energy storage. ACS Nano 3:3730–3736
    24. Wang G, Shen X, Yao J, Park J (2009) Graphene nanosheets for enhanced lithium storage in lithium ion batteries. Carbon 47:2049–2053
    25. Brownson DAC, Banks CE (2012) Fabricating graphene supercapacitors: highlighting the impact of surfactants and moieties. Chem Comm 48:1425–1427
    26. Wang G, Zhang L, Zhang J (2011) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828
    27. Portet C, Yushin G, Gogotsi Y (2007) Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors. Carbon 45:2511–2518
    28. Taberna PL, Simon P, Fauvarque JF (2003) Electrochemical characteristics and impedance spectroscopy studies of carbon–carbon supercapacitors. J Electrochem Soc 150:A292
    29. Jang JH, Yoon S, Ka BH, Jung YM, Oh SM (2005) Complex capacitance analysis on leakage current appearing in electric double-layer capacitor carbon electrode. J Electrochem Soc 152:A1418–A1422
    30. Jang JH, Kato A, Machida K, Naoi K (2006) Supercapacitor performance of hydrous ruthenium oxide electrodes prepared by electrophoretic deposition. J Electrochem Soc 153:A321–A328
  • 作者单位:1. Department of Mechanical and Materials Engineering, Florida International University, Miami, FL 33174, USA2. Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Science, Beijing, 100190 People鈥檚 Republic of China
  • ISSN:1433-0768
文摘
Thin-film electrodes of graphene nanoplatelets (GNPs) were fabricated through the electrostatic spray deposition (ESD) technique. The combination of a binder-free deposition technique and an open pore structure of graphene films results in an excellent power handling ability of the electrodes. Cyclic voltammetry measurements of 1-μm-thick electrodes yield near rectangular curves even at a very high scan rate of 20 V s−1. Thin-film electrodes (1 μm thickness) show specific power and energy of about 75.46 kW kg−1 and 2.93 W h kg−1, respectively, at a 5 V s−1 scan rate. For the thin-film electrode, about 53 % of the initial specific capacitance of electrodes at low scan rates was retained at a high scan rate of 20 V s−1. Although the thickness of the thin-film electrodes has influence on their rate capability, an electrode with an increased thickness of 6 μm retained about 30 % if its initial capacitance at a very high scan rate of 20 V s−1. The results show that the ESD-fabricated GNP electrodes are promising candidates for thin-film energy storage for applications that require moderate energy density and very high power and rate handling ability.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700