Microstructures and mechanical properties of fiber cells from Echinocactus grusonii cactus spine
详细信息    查看全文
  • 作者:FengLing Huang (1) (2)
    Hu Qiu (1)
    WanLin Guo (1)
  • 关键词:spine ; fibers ; microstructure ; indentation modulus
  • 刊名:SCIENCE CHINA Technological Sciences
  • 出版年:2014
  • 出版时间:April 2014
  • 年:2014
  • 卷:57
  • 期:4
  • 页码:706-712
  • 全文大小:729 KB
  • 参考文献:1. Gibson L J. The hierarchical structure and mechanics of plant materials. J R Soc Interface, 2012, 9: 2749-766 CrossRef
    2. Wimmer R, Lucas B N, Oliver W C, et al. Longitudinal hardness and young’s modulus of spruce tracheid secondary walls using nanoindentation technique. Wood Sci Technol, 1997, 31: 131-41 CrossRef
    3. Gindl W, Sch?berl T. The significance of the elastic modulus of wood cell walls obtained from nanoindentation measurements. Compos Part A-Appl S, 2004, 35: 1345-349 CrossRef
    4. Zou L, Jin H, Lu W Y, et al. Nanoscale structural and mechanical characterization of the cell wall of bamboo fibers. Mater Sci Eng C, 2009, 29: 1375-379 CrossRef
    5. Yu Y, Fei B H, Zhang B, et al. Cell-wall mechanical properties of bamboo investigated by in-situ imaging nanoindentation. Wood Fiber Sci, 2007, 39: 527-35
    6. Huang F L, Guo W L. Structural and mechanical properties of the spines from echinocactus grusonii cactus. J Mater Sci, 2013, 48: 5420-428 CrossRef
    7. Mauseth J D. Cytokinin-and gibberellic acid-induced effects on the determination and morphogenesis of leaf primordia in opuntia polyacantha (cactaceae). Am J Bot, 1977, 64: 337-46 CrossRef
    8. Peharec P, Posilovi? H, Balen B, et al. Spine micromorphology of normal and hyperhydric mammillaria gracilis pfeiff. J Microsc-Oxford, 2010, 239: 78-6 CrossRef
    9. Ronel M, Lev Y S. Spiny plants in the archaeological record of israel. J Arid Environ, 2009, 73: 754-61 CrossRef
    10. Mosco A. Micro-morphology and anatomy of turbinicarpus (cactaceae) spines. Rev Mex Biodivers, 2009, 80: 119-28
    11. Mauseth J D. Structure-function relationships in highly modified shoots of cactaceae. Ann Bot-London, 2006, 98: 901-26 CrossRef
    12. Schlegel U. The composite structure of cactus spines. Bradleya, 2009, 27: 129-38
    13. Gindl-A W, Keckes J. The structure and mechanical properties of spines from the cactus opuntia ficus-indica. Bio Resour, 2012, 7: 1232-237
    14. Malainine M E, Dufresne A, Dupeyre D, et al. Structure and morphology of cladodes and spines of opuntia ficus-indi cellulose extraction and characterisation. Carbohyd Polym, 2003, 51: 77-3 CrossRef
    15. Touhami A, Nysten B, Dufrêne Y F. Nanoscale mapping of the elasticity of microbial cells by atomic force microscopy. Langmuir, 2003, 19: 4539-543 CrossRef
    16. Batra S K, Lewin M. Other long vegetable fibers: Abaca, banana, sisal, henequen, flax, ramie, hemp, sunn, and coir. Handbook Fiber Chem, 2007, 5: 405-52
    17. Reddy N, Yang Y. Structure and properties of high quality natural cellulose fibers from cornstalks. Polymer, 2005, 46: 5494-500 CrossRef
    18. Reddy N, Yang Y. Properties of high-quality long natural cellulose fibers from rice straw. J Agr Food Chem, 2006, 54: 8077-081 CrossRef
    19. Wakelin J H, Virgin H S, Crystal E. Development and comparison of two X-ray methods for determining the crystallinity of cotton cellulose. J Appl Phys, 1959, 30: 1654-662 CrossRef
    20. Mwaikambo L Y, Ansell M P. Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. J Appl Polym Sci, 2002, 84: 2222-234 CrossRef
    21. Cave I D. Theory of X-ray measurement of microfibril angle in wood. Wood Sci Technol, 1997, 31: 143-52 CrossRef
    22. Stuart S A, Evans R. X-ray diffraction estimation of the microfibril angle variation in eucalypt wood. Appita J, 1995, 48: 197-00
    23. Morán J I, Alvarez V A, Cyras V P, et al. Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose, 2008, 15: 149-59 CrossRef
    24. Higuchi T, Ito Y, Shimada M, et al. Chemical properties of milled wood lignin of grasses. Phytochemistry, 1967, 6: 1551-556 CrossRef
    25. Salmén L, de Ruvo A. A model for the prediction of fiber elasticity. Wood Fiber Sci, 1985, 17: 336-50
    26. Wang X Q, Ren H Q, Zhang B, et al. Cell wall structure and formation of maturing fibres of moso bamboo (phyllostachys pubescens) increase buckling resistance. J R Soc Interface, 2012, 70: 988-96 CrossRef
    27. Rao K M M, Rao K M. Extraction and tensile properties of natural fibers: Vakka, date and bamboo. Compo Struct, 2007, 77: 288-95 CrossRef
    28. Reddy N, Yang Y. Natural cellulose fibers from soybean straw. Bioresour Technol, 2009, 100: 3593-598 CrossRef
    29. Yu Y, Fei B, Zhang B, et al. Cell-wall mechanical properties of bamboo investigated by in-situ imaging nanoindentation. Wood Fiber Sci, 2007, 39: 527-35
    30. Charlier L, Mazeau K. Molecular modeling of the structural and dynamical properties of secondary plant cell walls: Influence of lignin chemistry. J Phy Chem B, 2012, 116: 4163-174 CrossRef
    31. Bergander A, Salmén L. Cell wall properties and their effects on the mechanical properties of fibers. J Mater Sci, 2002, 37: 151-56 CrossRef
  • 作者单位:FengLing Huang (1) (2)
    Hu Qiu (1)
    WanLin Guo (1)

    1. State Key Laboratory for mechanics and control of mechanical structures, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education and Institute of Nanoscience, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
    2. Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
  • ISSN:1869-1900
文摘
Spine is the sharpest and hardest part of many plants, which contains highly aligned fiber cells. Here, we report the microstructures and mechanical properties as well as their correlation of single spine fiber cells (SFCs) from the cactus Echinocactus grusonii. It is found that the SFCs are 0.32-.57 mm in length and 4.6-.0 μm in width, yielding an aspect ratio of 53-24. X-ray diffraction and Fourier transform infrared spectrophotometry show that the spine fiber is mainly made up of cellulose I with a crystallinity index up to ?6%. Nanoindentation tests show that a natural spine presents a high modulus of ?7 GPa. Removing hemicellulose and lignin from the SFC significantly reduces its modulus to ?.487 GPa, demonstrating the critical role of adhesives hemicellulose and lignin in affecting the mechanical properties of the SFCs. This finding sheds light on designing novel bio-inspired high-performance composite nanomaterials with aligned nanofibers, such as using hemicellulose and lignin as adhesive in making carbon nanotube fibers.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700