Friction of low-dimensional nanomaterial systems
详细信息    查看全文
  • 作者:Wanlin Guo ; Jun Yin ; Hu Qiu ; Yufeng Guo ; Hongrong Wu ; Minmin Xue
  • 关键词:friction ; nanomaterials ; two ; dimensional materials ; nanotubes ; nanoparticles ; energy dissipation
  • 刊名:Friction
  • 出版年:2014
  • 出版时间:September 2014
  • 年:2014
  • 卷:2
  • 期:3
  • 页码:209-225
  • 全文大小:3,072 KB
  • 参考文献:1. Stachowiak G W, Batchelor A W. / Engineering Tribology ( / Tribology Series 24). Amsterdam: Elsevier, 1993: 539-62.
    2. Holmberg K, Andersson P, Erdemir A. Global energy consumption due to friction in passenger cars. / Tribol Int 47: 221-34 (2012) CrossRef
    3. Meyer E, Overney R, Dransfeld K, Gyalog T. / Nanoscience: Friction and Rheology on the Nanometer Scale. Singapore: World Scientific, 1998. CrossRef
    4. Dowson D. / History of Tribology. London: Professional Engineering Publishing, 1998.
    5. Bowden F P, Tabor D. / The Friction and Lubrication of Solids. Oxford (UK): Oxford Univ Press, 1950.
    6. Ruan J-A, Bhushan B. Atomic-scale friction measurements using friction force microscopy: Part I—General principles and new measurement techniques. / J Tribol 116: 378-88 (1994) CrossRef
    7. Bhushan B. Nanotribology and nanomechanics. / Wear 259: 1507-531 (2005) CrossRef
    8. Tomlinson G. CVI. A molecular theory of friction. / Philos Mag 7: 905-39 (1929)
    9. Kontorova T, Frenkel J. On the theory of plastic deformation and twinning. II. / Zh Eksp Teor Fiz 8: 1340-348 (1938)
    10. Weiss M, Elmer F-J. Dry friction in the Frenkel-Kontorova-Tomlinson model: Static properties. / Phys Rev B 53: 7539 (1996) CrossRef
    11. Matsushita K, Matsukawa H, Sasaki N. Atomic scale friction between clean graphite surfaces. / Solid State Commun 136: 51-5 (2005) CrossRef
    12. Bhushan B, Israelachvili J N, Landman U. Nanotribology: Friction, wear and lubrication at the atomic scale. / Nature 374: 607-16 (1995) CrossRef
    13. Guan Q F, Li G Y, Wang H Y, An J. Friction-wear characteristics of carbon fiber reinforced friction material. / J Mater Sci 39: 641-43 (2004) CrossRef
    14. Kim S J, Jang H. Friction and wear of friction materials containing two different phenolic resins reinforced with aramid pulp. / Tribol Int 33: 477-84 (2000) CrossRef
    15. Guo D, Xie G, Luo J. Mechanical properties of nanoparticles: Basics and applications. / J Phys D: Appl Phys 47: 013001 (2014) CrossRef
    16. Mate C, McClelland G, Erlandsson R, Chiang S. Atomic-scale friction of a tungsten tip on a graphite surface. / Phys Rev Lett 59: 1942-945 (1987) CrossRef
    17. Dietzel D, Ritter C, M?nninghoff T, Fuchs H, Schirmeisen A, Schwarz U. Frictional duality observed during nanoparticle sliding. / Phys Rev Lett 101: 125505 (2008) CrossRef
    18. Tevet O, Von-Huth P, Popovitz-Biro R, Rosentsveig R, Wagner H D, Tenne R. Friction mechanism of individual multilayered nanoparticles. / Proceedings of the National Academy of Sciences 108: 19901-9906 (2011) CrossRef
    19. Park J Y, Ogletree D F, Salmeron M, Ribeiro R A, Canfield P C, Jenks C J, Thiel P A. High frictional anisotropy of periodic and aperiodic directions on a quasicrystal surface. / Science 309: 1354-356 (2005) CrossRef
    20. Dietzel D, Feldmann M, Fuchs H, Schwarz U D, Schirmeisen A. Transition from static to kinetic friction of metallic nanoparticles. / Appl Phys Lett 95: 053104 (2009) CrossRef
    21. Xue Q, Liu W, Zhang Z. Friction and wear properties of a surface-modified TiO2 nanoparticle as an additive in liquid paraffin. / Wear 213: 29-2 (1997) CrossRef
    22. Sawyer W G, Freudenberg K D, Bhimaraj P, Schadler L S. A study on the friction and wear behavior of PTFE filled with alumina nanoparticles. / Wear 254: 573-80 (2003) CrossRef
    23. Cizaire L, Vacher B, Le Mogne T, Martin J M, Rapoport L, Margolin A, Tenne R. Mechanisms of ultra-low friction by hollow inorganic fullerene-like MoS2 nanoparticles. / Surf Coat Tech 160: 282-87 (2002) CrossRef
    24. Chhowalla M, Amaratunga G A J. Thin films of fullerene-like MoS2 nanoparticles with ultra-low friction and wear. / Nature 407: 164-67 (2000) CrossRef
    25. Cumings J, Zettl A. Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes. / Science 289: 602-04 (2000) CrossRef
    26. Cumings J, Collins P G, Zettl A. Materials: Peeling and sharpening multiwall nanotubes. / Nature 406: 586-86 (2000) CrossRef
    27. Fennimore A M, Yuzvinsky T D, Han W-Q, Fuhrer M S, Cumings J, Zettl A. Rotational actuators based on carbon nanotubes. / Nature 424: 408-10 (2003) CrossRef
    28. Zheng Q, Jiang Q. Multiwalled carbon nanotubes as gigahertz oscillators. / Phys Rev Lett 88: 045503 (2002) CrossRef
    29. Zheng Q, Liu J Z, Jiang Q. Excess van der Waals interaction energy of a multiwalled carbon nanotube with an extruded core and the induced core oscillation. / Phys Rev B 65: 245409 (2002) CrossRef
    30. Guo W, Guo Y, Gao H, Zheng Q, Zhong W. Energy dissipation in gigahertz oscillators from multiwalled carbon nanotubes. / Phys Rev Lett 91: 125501 (2003) CrossRef
    31. Zhao Y, Ma C-C, Chen G, Jiang Q. Energy dissipation mechanisms in carbon nanotube oscillators. / Phys Rev Lett 91: 175504 (2003) CrossRef
    32. Servantie J, Gaspard P. Methods of calculation of a friction coefficient: Application to nanotubes. / Phys Rev Lett 91: 185503 (2003) CrossRef
    33. Legoas S, Coluci V, Braga S, Coura P, Dantas S, Galvao D. Molecular-dynamics simulations of carbon nanotubes as gigahertz oscillators. / Physl Rev Lett 90: 055504 (2003) CrossRef
    34. Rivera J L, McCabe C, Cummings P T. Oscillatory behavior of double-walled nanotubes under extension: A simple nanoscale damped spring. / Nano Lett 3: 1001-005 (2003) CrossRef
    35. Guo Z R, Chang T C, Guo X M, Gao H J. Thermal-Induced Edge Barriers and Forces in Interlayer Interaction of Concentric Carbon Nanotubes. / Phys Rev Lett 107: 105502 (2011) CrossRef
    36. Tangney P, Louie S G, Cohen M L. Dynamic sliding friction between concentric carbon nanotubes. / Phys Rev Lett 93: 065503 (2004) CrossRef
    37. Guo W, Gao H. Optimized bearing and interlayer friction in multiwalled carbon nanotubes. / Comput Model Eng Sci 7: 19-4 (2005)
    38. Zhang R, Ning Z, Zhang Y, Zheng Q, Chen Q, Xie H, Zhang Q, Qian W, Wei F. Superlubricity in centimetres-long double-walled carbon nanotubes under ambient conditions. / Nat Nanotechnol 8: 912-16 (2013) CrossRef
    39. Urbakh M. Friction: Towards macroscale superlubricity. / Nat Nanotechnol 8: 893-94 (2013) CrossRef
    40. Guo W, Zhong W, Dai Y, Li S. Coupled defect-size effects on interlayer friction in multiwalled carbon nanotubes. / Phys Rev B 72: 075409 (2005) CrossRef
    41. Kis A, Jensen K, Aloni S, Mickelson W, Zettl A. Interlayer forces and ultralow sliding friction in multiwalled carbon nanotubes. / Phys Rev Lett 97: 025501 (2006) CrossRef
    42. Niguès A, Siria A, Vincent P, Poncharal P, Bocquet L. Ultrahigh interlayer friction in multiwalled boron nitride nanotubes. / Nat Mater 13: 688-93 (2014) CrossRef
    43. Polyakov B, Dorogin L M, Vlassov S, Kink I, Lohmus A, Romanov A E, Lohmus R. Real-time measurements of sliding friction and elastic properties of ZnO nanowires inside a scanning electron microscope. / Solid State Commun 151: 1244-247 (2011) CrossRef
    44. Zhu Y, Qin Q, Gu Y, Wang Z. Friction and shear strength at the nanowire-substrate interfaces. / Nanoscale Res Lett 5: 291-95 (2009) CrossRef
    45. Conache G, Gray S M, Ribayrol A, Froberg L E, Samuelson L, Pettersson H, Montelius L. Friction measurements of InAs nanowires on silicon nitride by AFM manipulation. / Small 5: 203-07 (2009) CrossRef
    46. Kim H J, Kang K H, Kim D E. Sliding and rolling frictional behavior of a single ZnO nanowire during manipulation with an AFM. / Nanoscale 5: 6081-087 (2013) CrossRef
    47. Qin Q, Zhu Y. Static friction between silicon nanowires and elastomeric substrates. / ACS Nano 5: 7404-410 (2011) CrossRef
    48. Dorogin L M, Polyakov B, Petruhins A, Vlassov S, L?hmus R, Kink I, Romanov A E. Modeling of kinetic and static friction between an elastically bent nanowire and a flat surface. / J Mater Res 27: 580-85 (2012) CrossRef
    49. Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Electric field effect in atomically thin carbon films. / Science 306: 666-69 (2004) CrossRef
    50. Deacon R F, Goodman J F. lubrication by lemallar solid. / Proc R Soc Lond A, Mat Phys Sci 243: 464-82 (1958) CrossRef
    51. Chhowalla M, Amaratunga G A J. Thin films of fullerene-like MoS2 nanoparticles with ultra-low friction and wear. / Nature 407: 164-67 (2000) CrossRef
    52. Hilton M R, Fleischauer P D. Applications of solid lubricant films in spacecraft. / Surf Coat Tech 54-5: 435-41 (1992) CrossRef
    53. Rowe G W. Some observations on the frictional behaviour of boron nitride and of graphite. / Wear 3: 274-85 (1960) CrossRef
    54. Lee H, Lee N, Seo Y, Eom J, Lee S. Comparison of frictional forces on graphene and graphite. / Nanotechnology 20: 325701 (2009) CrossRef
    55. Lee C, Wei X, Li Q, Carpick R, Kysar J W, Hone J. Elastic and frictional properties of graphene. / Physica Status Solidi (b) 246: 2562-567 (2009) CrossRef
    56. Lee C, Li Q, Kalb W, Liu X Z, Berger H, Carpick R W, Hone J. Frictional characteristics of atomically thin sheets. / Science 328: 76-0 (2010) CrossRef
    57. Li Q, Lee C, Carpick R W, Hone J. Substrate effect on thickness-dependent friction on graphene. / Physica Status Solidi (b) 247: 2909-914
    58. Cho D-H, Wang L, Kim J S, Lee G H, Kim E S, Lee S, Lee S Y, Hone J, Lee C. Effect of surface morphology on friction of graphene on various substrates. / Nanoscale 5: 3063-069 (2013) CrossRef
    59. Smolyanitsky A, Killgore J P, Tewary V K. Effect of elastic deformation on frictional properties of few-layer graphene. / Phys Rev B 85: 035412 (2012) CrossRef
    60. Ye Z, Tang C, Dong Y, Martini A. Role of wrinkle height in friction variation with number of graphene layers. / J Appl Phys 112: 116102 (2012) CrossRef
    61. Barboza A P M, Chacham H, Oliveira C K, Fernandes T F D, Ferreira E H M, Archanjo B S, Batista R J C, de Oliveira A B, Neves B R A. Dynamic negative compressibility of few-layer graphene, / h-BN, and MoS2. / Nano Lett 12: 2313-317 (2012) CrossRef
    62. Egberts P, Han G H, Liu X Z, Johnson A T C, Carpick R W. Frictional behavior of atomically-thin sheets hexagonal-shaped graphene islands grown on copper by chemical vapor deposition. / ACS Nano 8: 5010-021 (2014) CrossRef
    63. Filleter T, McChesney J, Bostwick A, Rotenberg E, Emtsev K, Seyller T, Horn K, Bennewitz R. Friction and dissipation in epitaxial graphene films. / Phys Rev Lett 102: 086102 (2009) CrossRef
    64. Filleter T, Bennewitz R. Structural and frictional properties of graphene films on SiC(0001) studied by atomic force microscopy. / Phys Rev B 81: 155412 (2010) CrossRef
    65. Byun I S, Yoon D, Choi J S, Hwang I, Lee D H, Lee M J, Kawai T, Son Y W, Jia Q, Cheong H, Park B H. Nanoscale lithography on monolayer graphene using hydrogenation and oxidation. / ACS Nano 5: 6417-424 (2011) CrossRef
    66. Shin Y J, Stromberg R, Nay R, Huang H, Wee A T S, Yang H, Bhatia C S. Frictional characteristics of exfoliated and epitaxial graphene. / Carbon 49: 4070-073 (2011) CrossRef
    67. Pandey D, Reifenberger R, Piner R. Scanning probe microscopy study of exfoliated oxidized graphene sheets. / Surf Sci 602: 1607-613 (2008) CrossRef
    68. Zhang J, Lu W, Tour J M, Lou J. Nanoscale frictional characteristics of graphene nanoribbons. / Appl Phys Lett 101: 123104 (2012) CrossRef
    69. Wang L F, Ma T B, Hu Y Z, Wang H. Atomic-scale friction in graphene oxide: An interfacial interaction perspective from first-principles calculations. / Phys Rev B 86: 125436 (2012) CrossRef
    70. Deng Z, Smolyanitsky A, Li Q, Feng X Q, Cannara R J. Adhesion-dependent negative friction coefficient on chemically modified graphite at the nanoscale. / Nat Mater 11: 1032-037 (2012)
    71. Fessler G, Eren B, Gysin U, Glatzel T, Meyer E. Friction force microscopy studies on SiO2 supported pristine and hydrogenated graphene. / Appl Phys Lett 104: 041910 (2014) CrossRef
    72. Kwon S, Ko J H, Jeon K J, Kim Y H, Park J Y. Enhanced nanoscale friction on fluorinated graphene. / Nano Lett 12: 6043-048 (2012) CrossRef
    73. H?lscher H, Ebeling D, Schwarz U D. Friction at atomic-scale surface steps: Experiment and theory. / Phys Rev Lett 101: 246105 (2008) CrossRef
    74. Liu P, Zhang Y W. A theoretical analysis of frictional and defect characteristics of graphene probed by a capped single-walled carbon nanotube. / Carbon 49: 3687-697 (2011) CrossRef
    75. Kwon S, Choi S, Chung H J, Yang H, Seo S, Jhi S H, Young Park J. Young Probing nanoscale conductance of monolayer graphene under pressure. / Appl Phys Lett 99: 013110 (2011) CrossRef
    76. Choi J S, Kim J S, Byun I S, Lee D H, Lee M J, Park B H, Lee C, Yoon D, Cheong H, Lee K H, Son Y W, Park J Y, Salmeron M. Friction anisotropy-driven domain imaging on exfoliated monolayer graphene. / Science 333: 607-10 (2011) CrossRef
    77. Verhoeven G S, Dienwiebel M, Frenken J W. Model calculations of superlubricity of graphite. / Physl Rev B 70: 165418 (2004) CrossRef
    78. Guo Y, Guo W, Chen C. Modifying atomic-scale friction between two graphene sheets: A molecular-force-field study. / Phys Rev B 76: 155429 (2007) CrossRef
    79. Bonelli F, Manini N, Cadelano E, Colombo L. Atomistic simulations of the sliding friction of graphene flakes. / Eur Phys J B 70: 449-59 (2009) CrossRef
    80. Whitby M, Quirke N. Fluid flow in carbon nanotubes and nanopipes. / Nat Nano 2: 87-4 (2007) CrossRef
    81. Majumder M, Chopra N, Andrews R, Hinds B J. Nanoscale hydrodynamics: Enhanced flow in carbon nanotubes. / Nature 438: 44 (2005) CrossRef
    82. Holt J K, Park H G, Wang Y, Stadermann M, Artyukhin A B, Grigoropoulos C P, Noy A, Bakajin O. Fast mass transport through sub-2-nanometer carbon nanotubes. / Science 312: 1034-037 (2006) CrossRef
    83. Kannam S K, Todd B D, Hansen J S, Daivis P J. Slip length of water on graphene: Limitations of non-equilibrium molecular dynamics simulations. / J Chem Phys 136: 024705 (2012) CrossRef
    84. Kannam S K, Todd B D, Hansen J S, Daivis P J. Slip flow in graphene nanochannels. / J Chem Phys 135: 114701 (2011) CrossRef
    85. N’guessan H E, Leh A, Cox P, Bahadur P, Tadmor R, Patra P, Vajtai R, Ajayan P M, Wasnik P. Water tribology on graphene. / Nat Commun 3: 1242 (2012) CrossRef
    86. Yin J, Li X, Yu J, Zhang Z, Zhou J, Guo W. Generating electricity by moving a droplet of ionic liquid along graphene. / Nat Nano 9: 378-83 (2014) CrossRef
    87. Yin J, Zhang Z, Li X, Yu J, Zhou J, Chen Y, Guo W. Waving potential in graphene. / Nat Commun 5: 3582 (2014)
    88. Kim K-S, Lee H-J, Lee C, Lee S-K, Jang H, Ahn J-H, Kim J-H, Lee H-J. Chemical vapor deposition-grown graphene: The thinnest solid lubricant. / ACS Nano 5: 5107-114 (2011) CrossRef
    89. Martin-Olmos C, Rasool H I, Weiller B H, Gimzewski J K. Graphene MEMS: AFM probe performance improvement. / ACS Nano 7: 4164-170 (2013) CrossRef
    90. Berman D, Erdemir A, Sumant A V. Reduced wear and friction enabled by graphene layers on sliding steel surfaces in dry nitrogen. / Carbon 59: 167-75 (2013) CrossRef
    91. Li X, Yin J, Zhou J, Guo W. Large area hexagonal boron nitride monolayer as efficient atomically thick insulating coating against friction and oxidation. / Nanotechnology 25: 105701 (2014)
    92. Song H-J, Li N. Frictional behavior of oxide graphene nanosheets as water-base lubricant additive. / Appl Phys A 105: 827-32 (2011) CrossRef
    93. Cho D H, Kim J S, Kwon S H, Lee C, Lee Y Z. Evaluation of hexagonal boron nitride nano-sheets as a lubricant additive in water. / Wear 302: 981-86 (2013) CrossRef
    94. Ren G, Zhang Z, Zhu X, Ge B, Guo F, Men X, Liu W. Influence of functional graphene as filler on the tribological behaviors of Nomex fabric/phenolic composite. / Compos Part A: Appl Sci Manuf 49: 157-64 (2013) CrossRef
    95. Kandanur S S, Rafiee M A, Yavari F, Schrameyer M, Yu Z-Z, Blanchet T A, Koratkar N. Suppression of wear in graphene polymer composites. / Carbon 50: 3178-183 (2012) CrossRef
  • 作者单位:Wanlin Guo (1)
    Jun Yin (1)
    Hu Qiu (1)
    Yufeng Guo (1)
    Hongrong Wu (1)
    Minmin Xue (1)

    1. Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, and Institute of Nanoscience, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing, 210016, China
  • ISSN:2223-7704
文摘
When material dimensions are reduced to the nanoscale, exceptional physical mechanics properties can be obtained that differ significantly from the corresponding bulk materials. Here we review the physical mechanics of the friction of low-dimensional nanomaterials, including zero-dimensional nanoparticles, one-dimensional multiwalled nanotubes and nanowires, and two-dimensional nanomaterials—such as graphene, hexagonal boron nitride (h-BN), and transition-metal dichalcogenides—as well as topological insulators. Nanoparticles between solid surfaces can serve as rolling and sliding lubrication, while the interlayer friction of multiwalled nanotubes can be ultralow or significantly high and sensitive to interwall spacing and chirality matching, as well as the tube materials. The interwall friction can be several orders of magnitude higher in binary polarized h-BN tubes than in carbon nanotubes mainly because of wall buckling. Furthermore, current extensive studies on two-dimensional nanomaterials are comprehensively reviewed herein. In contrast to their bulk materials that serve as traditional dry lubricants (e.g., graphite, bulk h-BN, and MoS2), large-area high-quality monolayered two-dimensional nanomaterials can serve as single-atom-thick coatings that minimize friction and wear. In addition, by appropriately tuning the surface properties, these materials have shown great promise for creating energy-efficient self-powered electro-opto-magneto-mechanical nanosystems. State-of-the-art experimental and theoretical methods to characterize friction in nanomaterials are also introduced.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700