Effects of different nitrogen species on sensitivity and photosynthetic stress of three common freshwater diatoms
详细信息    查看全文
  • 作者:Jianying Y. Zhang (1) (2)
    Wanmin M. Ni (1) (2) (4)
    Yinmei M. Zhu (1) (2)
    Yangdong D. Pan (3)
  • 关键词:Diatoms ; Nitrogen ; Sensitivity ; Chloroplast ; Stress
  • 刊名:Aquatic Ecology
  • 出版年:2013
  • 出版时间:March 2013
  • 年:2013
  • 卷:47
  • 期:1
  • 页码:25-35
  • 全文大小:585KB
  • 参考文献:1. Allen AE, Ward BB, Song BK (2005) Characterization of diatom ( / Bacillariophyceae) nitrate reductase genes and their detection in marine phytoplankton communities. J Phycol 41:95-04. doi:10.1111/j.1529-8817.2005.04090.x CrossRef
    2. Ayling SM (1993) The effect of ammonium ions on membrane potential and anion flux in roots of barley and tomato. Plant, Cell Environ 16:297-03. doi:10.1111/j.1365-3040.1993.tb00872.x CrossRef
    3. Bennion H, Juggins S, Anderson NJ (1996) Predicting epilimnetic phosphorus concentrations using an improved diatom-based transfer function and its application to lake eutrophication management. Environ Sci Technol 30(6):2004-007. doi:10.1021/es9508030 CrossRef
    4. Bowler C, Vardi A, Allen AE (2010) Oceanographic and biogeochemical insights from diatom genomes. Annu Rev Mar Sci 2:333-65. doi:10.1146/annurev-marine-120308-081051 CrossRef
    5. Chen WM, Zhang QM, Dai SG (2009) Effects of nitrate on intracellular nitrite and growth of / Microcystis aeruginosa. J Appl Phycol 21:701-06. doi:10.1007/s10811-009-9405-1 CrossRef
    6. Colmer TD, Bloom AJ (1998) A comparison of NH4 + and NO3 ?/sup> net fluxes along roots of rice and maize. Plant, Cell Environ 21:240-46. doi:10.1046/j.1365-3040.1998.00261.x CrossRef
    7. Crawford NM, Glass ADM (1998) Molecular and physiological aspects of nitrate uptake in plants. Trends Plant Sci 3:389-95. doi:10.1016/S1360-1385(98)01311-9 CrossRef
    8. Dai GZ, Shang JL, Qiu BS (2012) Ammonia may play an important role in the succession of cyanobacterial blooms and the distribution of common algal species in shallow freshwater lakes. Global Change Biol 18:1571-581. doi:10.1111/j.1365-2486.2012.02638.x CrossRef
    9. Duong TT, Morin S, Herlory O, Feurtet-Mazel A, Coste M, Boudou A (2008) Seasonal effects of cadmium accumulation in periphytic diatom communities of freshwater biofilms. Aquat Toxicol 90:19-8. doi:10.1016/j.aquatox.2008.07.012 CrossRef
    10. Duong TT, Morin S, Coste M, Herlory O, Feurtet-Mazei A, Boudou A (2010) Experimental toxicity and bioaccumulation of cadmium in freshwater periphytic diatoms in relation with biofilm maturity. Sci Total Environ 408:552-62. doi:10.1016/j.scitotenv.2009.10.015 CrossRef
    11. Finlay BJ, Monaghan EB, Maberly SC (2002) Hypothesis: the rate and scale of dispersal of freshwater diatom species is a function of their global abundance. Protist 153(3):261-73. doi:10.1078/1434-4610-00103 CrossRef
    12. Gold C, Feurte-Mazel A, Coste M, Boudou A (2003) Effects of cadmium stress on periphytic diatom communities in indoor artificial streams. Freshwater Biol 48:316-28. doi:10.1046/j.1365-2427.2003.00980.x CrossRef
    13. Guo L (2007) Doing battle with the green monster of Taihu Lake. Science 317:1116. doi:10.1126/science.317.5842.1166 CrossRef
    14. Hoops HJ, Floyd GL (1979) Ultrastructure of the centric diatom, Cyclotella meneghiniana: vegetative cell and auxospore development. Phycologia 18(4):424-35. doi:10.2216/i0031-8884-18-4-424.1 CrossRef
    15. Hou LH, Wu CM, Huang HH, Chu HA (2011) Effects of ammonia on the structure of the oxygen-evolving complex in photosystem II as revealed by light-induced FTIR difference spectroscopy. Biochemistry 50:9248-254. doi:10.1021/bi200943q CrossRef
    16. Hurtley S (2009) Green for diatoms. Science 324:1614. doi:10.1126/science.324_1615d CrossRef
    17. Jespersen AM, Christofersen K (1987) Measurements of chlorophyll-a from phytoplankton using ethanol as extraction solvent. Fund Appl Limnol 109:445-54
    18. Kivimaenpaa M, Jonsson AM, Stjernquist I, Sellden G, Sutinen S (2004) The use of light and electron microscopy to assess the impact of ozone on Norway spruce needles. Environ Pollut 127:441-53. doi:10.1016/j.envpol.2003.08.014 CrossRef
    19. Kutka FJ, Richards C (1997) Short-term nutrient influences on algal assemblages in three rivers of the Minnesota River basin. J Freshwater Ecol 12(3):411-19. doi:10.1080/02705060.1997.9663551
    20. Lage-Pinto F, Oliveira JG, Cunha MD, Souza CMM, Rezende CE, Azevedo RA, Vitoria AP (2008) Chlorophyll a fluorescence and ultrastructural changes in chloroplast of water hyacinth as indicators of environmental stress. Environmen Exp Bot 64:307-13. doi:10.1016/j.envexpbot.2008.07.007 CrossRef
    21. Leland HV, Brown LR, Mueller DK (2001) Distribution of algae in the San Joaquin River, California, in relation to nutrient supply, salinity and other environmental factors. Freshwater Biol 46:1139-167. doi:10.1046/j.1365-2427.2001.00740.x CrossRef
    22. Lenoci L, Camp PJ (2008) Diatom structures template by phase-separated fluids. Langmuir 24:217-23. doi:10.1021/la702278f CrossRef
    23. Morin S, Duong TT, Dabrin A, Coynel A, Herlory O, Baudrimont M, Delmas F, Durrieu G, Schafer J, Winterton P, Blanc G, Coste M (2008) Long-term survey of heavy metal pollution, biofilm contamination and diatom community structure in the Riou Mort watershed, South-West France. Environ Pollut 151:532-42. doi:10.1016/j.envpol.2007.04.023 CrossRef
    24. Ni WM, Zhang JY, Ding TD, Stevenson RJ, Zhu YM (2012) Environmental factors regulating cyanobacteria dominance and microcystin production in a subtropical lake within the Taihu watershed, China. J Zhejiang Univ-Sci A (Appl Phys Eng) 13:311-22. doi:10.1631/jzus.A1100197 CrossRef
    25. Orsel M, Filleur S, Fraisier V, Daniel-Vedele F (2002) Nitrate transport in plants: which gene and which control? J Exp Bot 53:825-33. doi:10.1093/jexbot/53.370.825 CrossRef
    26. Pei GF, Liu GX, Hu ZY (2010) A comparative study of benthic algal colonization in shallow lakes of China. J Freshwater ecol 25(3):403-11. doi:10.1080/02705060.2010.9664383 CrossRef
    27. Petit AN, Eullaffroy P, Debenest T, Gagne F (2010) Toxicity of PAMAM dendrimers to / Chlamydomonas reinhardtii. Aquat Tox 100:187-93. doi:10.1016/j.aquatox.2010.01.019 CrossRef
    28. Quinlan EL, Nietch CT, Blocksom K, Lazorchak JM, Batt AL, Griffiths R, Klemm DJ (2011) Temporal dynamics of periphyton exposed to tetracline in stream mesocosms. Environ Sci Technol 45(24):10684-0690. doi:10.1021/es202004k CrossRef
    29. Rimet F, Ector L, Cauchie HM, Hoffmann L (2009) Changes in diatom-dominated biofilms during simulated improvements in water quality: implications for diatom-based monitoring in rivers. Eur J Phycol 44(4):567-77. doi:10.1080/09670260903198521 CrossRef
    30. Rushforth SR, Brotherson JD, Fungladda N, Evenson WE (1981) The effect of dissolved heavy metals on attached diatom populations in the Uintah Basin of Utah, USA. Hydrobiologia 83:313-23. doi:10.1007/BF00008282 CrossRef
    31. Stehfest K, Toepel J, Wilhelm C (2005) The application of micro-FTIR spectroscopy to analyze nutrient stress-related changes in biomass composition of phytoplankton algae. Plant Physiol Biochem 43:717-26. doi:10.1016/j.plaphy.2005.07.001 CrossRef
    32. Swift DM, Wheeler AP (1991) Some structural and functional properties of a possible organic matrix from the frustules of the freshwater diatom / Cyclotella meneghiniana. Surface reactive peptides and polymers, chapter 24 (ACS symposium series, volume 444), pp 340-53 doi:10.1021/bk-1991-0444.ch024
    33. Szczepocka E, Szulc B (2009) The use of benthic diatoms in estimating water quality of variously polluted rivers. Int J Oceanography Hydrobiol 38(1):17-6. doi:10.2478/v10009-009-0012-x
    34. Thessen AE, Bowers HA, Stoecker DK (2009) Intra- and interspecies differences in growth and toxicity of / Pseudo- / nitzschia while using different nitrogen sources. Harmful Algae 8:792-10. doi:10.1016/j.hal.2009.01.003 CrossRef
    35. Tsuno M, Suzuki H, Kondo T, Mino H, Noguchi T (2011) Interaction and inhibitory effect of ammonium cation in the oxygen evolving center of photosystem II. Biochemistry 2506-514 doi:10.1021/bi101952g
    36. Wang XL, Han JY, Xu LG, Zhang Q (2010) Spatial and seasonal variation of the contamination within water body of the Grand Canal, China. Environ Pollut 158:1513-520. doi:10.1016/j.envpol.2009.12.018 CrossRef
    37. Wood NJ, Alizadeh T, Richardson DJ, Ferguson SJ, Moir JWB (2002) Two domains of a dual-function NarK protein are required for nitrate uptake, the first step of denitrification in / Paracoccus pantotrophus. Mol Microbiol 44:157-70 http://dx.doi.org/10.1046/j.1365-2958.2002.02859.x
    38. Zhang M, Wang ZQ, Xu J, Liu Y, NI L, Cao T, Xie P (2011) Ammonium, microcystins, and hypoxia of blooms in eutrophic water cause oxidative stress and C-N inbalance in submersed and floating-leaved aquatic plants in Lake Taihu, China. Chemosphere 82:329-39. http://dx.doi.org/10.1016%2Fj.chemosphere.2010.10.038
    39. Zhuo D, Okamoto M, Vidmar JJ, Glass ADM (1999) Regulation of a putative high-affinity nitrate transporter ( / Nrt2; / 1At) in roots of / Arabidopsis thaliana. Plant J 1999(17):563-68. doi:10.1046/j.1365-313X.1999.00396.x CrossRef
  • 作者单位:Jianying Y. Zhang (1) (2)
    Wanmin M. Ni (1) (2) (4)
    Yinmei M. Zhu (1) (2)
    Yangdong D. Pan (3)

    1. Institute of Environmental Science, Zhejiang University, Hangzhou, 310058, China
    2. Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, 310058, China
    4. School of Science and Technology, Zhejiang International Studies University, Hangzhou, 310012, China
    3. Department of Environmental Science and Management, School of the Environment, Portland State University, Portland, OR, 97207, USA
  • ISSN:1573-5125
文摘
Different sources of nitrogen pose diverse effects to algal community, but the mechanism of inhibitory effects of nitrogen sources on freshwater diatoms is not fully understood. The purpose of this study was to compare biomass, photosynthetic activity, and morphological structure of three common freshwater diatoms (Cyclotella meneghiniana, Nitzschia sp., and Gomphonema parvulum) under different nitrogen sources (NO3 ?/sup> or NH4 +). The sorption characteristic of each diatom was investigated, and chlorophyll a (Chl-a) content and oxygen evolution rate were analyzed to investigate stress of different nitrogen sources on each diatom in the batch experiments. Ammonium lowered the growth rate of C. meneghiniana and Nitzschia sp. when it was supplied in addition to growth-saturating nitrate concentrations, suggesting a combined effect of inhibition of nitrate uptake and direct ammonium stress. Oxygen evolution rate of Nitzschia sp. showed that the direct ammonium stress on the photosynthetic activity can be alleviated by coexistence of nitrate in the nitrogen enriched treatment, but not for C. meneghiniana and G. parvulum, which may be caused by a different nitrate transporter system within algal cells. Transmission electron microscopy was used to assess the toxicity of ammonium on ultrastructural chloroplast of each diatom. Ultrastructural changes in chloroplasts showed undefined electron-dense granules and lipid droplets, but the membrane integrity of cell was maintained, suggesting an adaptation to adjustment to ammonia stress. Results showed that Cyclotella meneghiniana and Nitzschia sp. were more sensitive to ammonium stress than Gomphonema parvulum on growth, but the mechanism remains unclear.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700