Modeling, simulation, and optimization of five-axis milling processes
详细信息    查看全文
  • 作者:Xuewei Zhang (1)
    Tianbiao Yu (1)
    Wanshan Wang (1)
  • 关键词:Five ; axis ; Milling processes ; Cutting forces ; Feedrate optimization
  • 刊名:The International Journal of Advanced Manufacturing Technology
  • 出版年:2014
  • 出版时间:October 2014
  • 年:2014
  • 卷:74
  • 期:9-12
  • 页码:1611-1624
  • 全文大小:4,450 KB
  • 参考文献:1. Baptista R, Antune Sim枚es. (2000) Three and five axes milling of sculptured surfaces. J Mater Process Technol 103:398鈥?03 CrossRef
    2. Ozturk E, Tunc LT, Budak E. (2009) Investigation of lead and tilt angle effects in 5-axis ball-end milling processes. Int J Mach Tools Manuf 49:1053鈥?062 CrossRef
    3. Jaehun J, Kwangsoo K. (1999) Generating tool paths for free-form pocket machining using z-buffer-based Voronoi diagrams. Int J Adv Manuf Technol 15:182鈥?87 CrossRef
    4. Hui KC (1994) Solid sweeping in image space-application in NC simulation. Vis Comput 10:306鈥?16 CrossRef
    5. Surmann T. (2006) Geometrisch-physikalische Simulation der Prozessdynamik f眉r das f眉nfachsige Fr盲sen von Freiformfl盲chen. Vulkan Verlag, Germany
    6. Cheng YZ, Xiong CH, Ye T, Cheng HK. (2011) Five-axis milling simulation based on B-rep model. Lect Notes Comput Sci 7101:22鈥?2 CrossRef
    7. Jang DG, Kim K, Jung JM (2000) Voxel-based virtual multi-axis machining. Int J Adv Manuf Technol 16:709鈥?13 CrossRef
    8. Kim YH, Ko SL. (2006) Improvement of cutting simulation using the octree method. Int J Adv Manuf Technol 28:1152鈥?160 CrossRef
    9. Zhu WH, Lee YS. (2004) Dexel-based force-torque rendering and volume updating for 5-DOF haptic product prototyping and virtual sculpting. Comput Ind 55:125鈥?45 CrossRef
    10. Weinert K, Zabel A, Ungemach E, Odendahl S. (2008) Improved NC path validation and manipulation with augmented reality methods. Prod Eng 2:371鈥?76 CrossRef
    11. Yang M, Park H. (1991) The prediction of cutting force in ball end milling. Int J Mach Tools Manufact 31:45鈥?4 CrossRef
    12. Tai CC, Fhu KH. (1994) A predictive force model in ball-end milling including eccentricity effects. Int J Mach Tools Manuf 34:959鈥?79 CrossRef
    13. Tai CC, Fhu KH. (1995) Model for cutting forces prediction in ball-end milling. Int J Mach Tools Manuf 35:511鈥?34 CrossRef
    14. Kim GM, Cho PJ, Chu CN. (2000) Cutting force prediction of sculptured surface ball-end milling using Z-map. Int J Mach Tools Manuf 40:277鈥?91 CrossRef
    15. Lazoglu I. (2003) Sculpture surface machining: a generalized model of ball-end milling force system. Int J Mach Tools Manuf 43:453鈥?62 CrossRef
    16. Lazoglu I. (2001) Generalized mechanistic force system model of ball end milling force system for sculpture surface machining. Am Soc Mech Eng Manuf Eng Div MED 12:31鈥?8
    17. Ozturk B, Lazoglu I, Erdim H. (2006) Machining of free-form surfaces. Part II: Calibration and forces. Int J Mach Tools Manuf 46:736鈥?46 CrossRef
    18. Altintas Y, Lee P. (1995) Combined mechanics and dynamics of ball end milling. ASME Winter Annu Meet MED 2:657鈥?677
    19. Lee P, Altintas Y. (1996) Prediction of ball end milling forces from orthogonal cutting data. Int J Mach Tools Manuf 36:1059鈥?1072 CrossRef
    20. Fontaine M, Devillez A, Moufki A, Dudzinski D. (2006) Predictive force model for ball-end milling and experimental validation with a wavelike form machining test. Int J Mach Tools Manuf 46:367鈥?80 CrossRef
    21. Ning L, Veldhuis SC. (2006) Mechanistic modeling of ball end milling including tool wear. J Manuf Processes 8:21鈥?8 CrossRef
    22. Bouzid Sa茂 W Ben Said M, Sa茂 K. (2009) An investigation of cutting forces in machining with worn ball-end mill. J Mater Process Technol 209:3198鈥?217 CrossRef
    23. Wu BH Yan X, Luo M, Gao G. (2013) Cutting force prediction for circular end milling process. Chinese Journal of Aeronautics 26:1057鈥?063 CrossRef
    24. Subrahmanyam KVR, Wong YS, Hong GS, Huang S. (2010) Cutting force prediction for ball nose milling of inclined surface. Int J Adv Manuf Technol 48:23鈥?2 CrossRef
    25. Wei ZC, Wang MJ, Cai YJ, Wang SF. (2013) Prediction of cutting force in ball-end milling of sculptured surface using improved Z-map. Int J Adv Manuf Technol 68:1167鈥?177 CrossRef
    26. Huang T, Zhang XM, Han D. (2013) Decoupled chip thickness calculation model for cutting force prediction in five-axis ball-end milling. Int J Adv Manuf Technol
    27. Zhang LQ. (2011) Process modeling and toolpath optimization for five-axis ball-end milling based on tool motion analysis. Int J Adv Manuf Technol 57:905鈥?16 CrossRef
    28. Lazoglu I, Boz Y, Erdimb H. (2011) Five-axis milling mechanics for complex free form surfaces. CIRP Ann Manuf Technol 60:117鈥?20 CrossRef
    29. Kaymarkci M, Lazoglu I, Murtezaoglu Y. (2006) Machining of complex sculptured surfaces with feedrate scheduling. Int J Manuf Res 1:157鈥?75 CrossRef
    30. Erdim H, Lazoglu I, Kaymakci M. (2007) Free-form surface machining and comparing feedrate scheduling strategies. Mach Sci Technol 11:117鈥?33 CrossRef
    31. Qian L, Yang BD, Lei S. (2008) Comparing and combining off-line feedrate rescheduling strategies in free-form surface machining with feedrate acceleration and deceleration. Rob Comput Integr Manuf 24:796鈥?03 CrossRef
    32. Zhang LQ, Feng JC, Wang YH, Chen M. (2009) Feedrate scheduling strategy for free-form surface machining through an integrated geometric and mechanistic model. Int J Adv Manuf Technol 40:1191鈥?201 CrossRef
    33. Lee HU, Cho DW (2003) An intelligent feedrate scheduling based on virtual machining. Int J Adv Manuf Technol 22:873鈥?82 CrossRef
  • 作者单位:Xuewei Zhang (1)
    Tianbiao Yu (1)
    Wanshan Wang (1)

    1. School of Mechanical Engineering and Automation, Northeastern University, Shenyang, People鈥檚 Republic of China
  • ISSN:1433-3015
文摘
The five-axis milling is widely applied to complex surface machining. When cutting forces of milling processes increase, the consequent workpiece and tool deflections may result in poor machining quality and high processing cost. There are a lot of researches on three-axis milling processes simulation, but very few about five-axis milling. To solve these disadvantages, this paper presents an integrated system containing modeling, simulation, and optimization of five-axis milling processes. The system has three major applications: (1) simulation verification of milling processes, (2) cutting forces prediction, and (3) cutting parameters (feedrate) optimization. The material removal process simulation used for verifying the five-axis milling is based on the three-dexel (depth element) model, and the cutter-workpiece engagement regions are extracted from the geometric model. According to the extracted cutter-workpiece engagement regions, the instantaneous cutting forces could be predicted. The feedrate is off-line modified for balancing the given maximum or the reference cutting forces with the predicted cutting forces on different machining steps. The developed system is validated experimentally to show that the modeling, simulation, and optimization methods could improve the accuracy and efficiency of five-axis milling processes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700