A new look at cerebrospinal fluid circulation
详细信息    查看全文
  • 作者:Thomas Brinker (1)
    Edward Stopa (1)
    John Morrison (1)
    Petra Klinge (1)

    1. Department of Neurosurgery
    ; The Warren Alpert Medical School of Brown University ; Rhode Island Hospital ; 593 Eddy Street ; Providence ; RI ; 02903 ; USA
  • 关键词:Cerebrospinal fluid circulation ; Astrocyte ; Aquaporin ; Blood brain barrier ; Virchow Robin space
  • 刊名:Fluids and Barriers of the CNS
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:11
  • 期:1
  • 全文大小:513 KB
  • 参考文献:1. Milhorat, TH (1975) The third circulation revisited. J Neurosurg 42: pp. 628-645
    2. McComb, JG (1983) Recent research into the nature of cerebrospinal fluid formation and absorption. J Neurosurg 59: pp. 369-383
    3. Davson, H (1966) Formation and drainage of the cerebrospinal fluid. Sci Basis Med Annu Rev. pp. 238-259
    4. Johanson, CE, Duncan, JA, Klinge, PM, Brinker, T, Stopa, EG, Silverberg, GD (2008) Multiplicity of cerebrospinal fluid functions: new challenges in health and disease. Cerebrospinal Fluid Res 5: pp. 10
    5. Pardridge, WM (2011) Drug transport in brain via the cerebrospinal fluid. Fluids Barriers CNS 8: pp. 7
    6. Hassin, GB (1947) The cerebrospinal fluid pathways (a critical note). J Neuropathol Exp Neurol 6: pp. 172-176
    7. Bateman, GA, Brown, KM (2012) The measurement of CSF flow through the aqueduct in normal and hydrocephalic children: from where does it come, to where does it go?. Child鈥檚 Nerv Syst 28: pp. 55-63
    8. Greitz, D (1993) Cerebrospinal fluid circulation and associated intracranial dynamics. A radiologic investigation using MR imaging and radionuclide cisternography. Acta Radiol Suppl 386: pp. 1-23
    9. Bulat, M, Klarica, M (2011) Recent insights into a new hydrodynamics of the cerebrospinal fluid. Brain Res Rev 65: pp. 99-112
    10. Oreskovic, D, Klarica, M (2010) The formation of cerebrospinal fluid: nearly a hundred years of interpretations and misinterpretations. Brain Res Rev 64: pp. 241-262
    11. Cserr, HF (1971) Physiology of the choroid plexus. Physiol Rev 51: pp. 273-311
    12. Becker, NH, Novikoff, AB, Zimmerman, HM (1967) Fine structure observations of the uptake of intravenously injected peroxidase by the rat choroid plexus. J Histochem Cytochem 15: pp. 160-165
    13. Dandy, WE, Blackfan, KD (1913) An experimental and clinical study of internal hydrocephalus. JAMA 61: pp. 2216-2217
    14. Dandy, WE (1919) Experimental hydrocephalus. Ann Surg 70: pp. 129-142
    15. Hassin, GB, Oldberg, E, Tinsley, M (1937) Changes in the brain in plexectomized dogs with commentson the cerebrospinal fluid. Arch Neurol Psychiatry 38: pp. 1224-1239
    16. Oreskovic, D, Klarica, M, Vukic, M (2002) The formation and circulation of cerebrospinal fluid inside the cat brain ventricles: a fact or an illusion?. Neurosci Lett 327: pp. 103-106
    17. Milhorat, TH (1974) Failure of choroid plexectomy as treatment for hydrocephalus. Surg Gynecol Obstet 139: pp. 505-508
    18. Welch, K (1963) Secretion of cerebrospinal fluid by choroid plexus of the rabbit. Am J Physiol 205: pp. 617-624
    19. Pollay, M (1975) Formation of cerebrospinal fluid. Relation of studies of isolated choroid plexus to the standing gradient hypothesis. J Neurosurg 42: pp. 665-673
    20. Pollay, M, Stevens, A, Estrada, E, Kaplan, R (1972) Extracorporeal perfusion of choroid plexus. J Appl Physiol 32: pp. 612-617
    21. Ames, A, Sakanoue, M, Endo, S (1964) Na, K, Ca, Mg, and C1 concentrations in choroid plexus fluid and cisternal fluid compared with plasma ultrafiltrate. J Neurophysiol 27: pp. 672-681
    22. de Rougemont, , Ames, A, Nesbett, FB, Hofmann, HF (1960) Fluid formed by choroid plexus; a technique for its collection and a comparison of its electrolyte composition with serum and cisternal fluids. J Neurophysiol 23: pp. 485-495
    23. Bering, EA (1959) Cerebrospinal fluid production and its relationship to cerebral metabolism and cerebral blood flow. Am J Physiol 197: pp. 825-828
    24. Bering, EA, Sato, O (1963) Hydrocephalus: changes in formation and absorption of cerebrospinal fluid within the cerebral ventricles. J Neurosurg 20: pp. 1050-1063
    25. Weed, LH (1917) The development of the cerebrospinal spaces in pig and in man. Contrib Embryol Carnegie Inst 5: pp. 1-116
    26. Pollay, M, Curl, F (1967) Secretion of cerebrospinal fluid by the ventricular ependyma of the rabbit. Am J Physiol 213: pp. 1031-1038
    27. Sonnenberg, H, Solomon, S, Frazier, DT (1967) Sodium and chloride movement into the central canal of cat spinal cord. Proc Soc Exp Biol Med 124: pp. 1316-1320
    28. Bradbury, MW (1976) Physiopathology of the blood鈥揵rain barrier. Adv Exp Med Biol 69: pp. 507-516
    29. Abbott, NJ (2004) Evidence for bulk flow of brain interstitial fluid: significance for physiology and pathology. Neurochem Int 45: pp. 545-552
    30. Cserr, HF (1988) Role of secretion and bulk flow of brain interstitial fluid in brain volume regulation. Ann NY Acad Sci 529: pp. 9-20
    31. Davson, H, Domer, FR, Hollingsworth, JR (1973) The mechanism of drainage of the cerebrospinal fluid. Brain 96: pp. 329-336
    32. Johanson, CE, Duncan, JA, Klinge, PM, Brinker, T, Stopa, EG, Silverberg, GD (2008) Multiplicity of cerebrospinal fluid functions: New challenges in health and disease. Cerebrospinal Fluid Res 5: pp. 10
    33. Davson, H, Welch, K, Segal, MB (1987) Physiology and pathophysiology of the cerebrospinal fluid. Churchill Livingstone, Edinburgh London Melbourne and New York
    34. Key, EAH, Retzius, MG (1875) Studien in der Anatomie des Nervensystems und des Bindegewebes. Samson and Wallin, Stockholm
    35. Weed, LH (1914) Studies on cerebro-spinal fluid. No. II : the theories of drainage of cerebro-spinal fluid with an analysis of the methods of investigation. J Med Res 31: pp. 21-49
    36. Weed, LH (1914) Studies on cerebro-spinal fluid. No. III : the pathways of escape from the subarachnoid spaces with particular reference to the Arachnoid Villi. J Med Res 31: pp. 51-91
    37. Weed, LH (1914) Studies on cerebro-spinal fluid. No. IV : the dual source of cerebro-spinal fluid. J Med Res 31: pp. 93-118
    38. Tripathi, RC (1977) The functional morphology of the outflow systems of ocular and cerebrospinal fluids. Exp Eye Res 25: pp. 65-116
    39. Levine, JE, Povlishock, JT, Becker, DP (1982) The morphological correlates of primate cerebrospinal fluid absorption. Brain Res 241: pp. 31-41
    40. Welch, K, Pollay, M (1961) Perfusion of particles through arachnoid villi of the monkey. Am J Physiol 201: pp. 651-654
    41. Courtice, FC, Simmonds, WJ (1951) The removal of protein from the subarachnoid space. Aust J Exp Biol Med Sci 29: pp. 255-263
    42. Boulton, M, Flessner, M, Armstrong, D, Hay, J, Johnston, M (1998) Determination of volumetric cerebrospinal fluid absorption into extracranial lymphatics in sheep. Am J Physiol 274: pp. R88-R96
    43. Bradbury, MW, Cserr, HF, Westrop, RJ (1981) Drainage of cerebral interstitial fluid into deep cervical lymph of the rabbit. Am J Physiol 240: pp. F329-F336
    44. Brinker, T, Ludemann, W, Berens, V, Samii, M (1997) Dynamic properties of lymphatic pathways for the absorption of cerebrospinal fluid. Acta Neuropathol(Berl) 94: pp. 493-498
    45. Weller, RO, Galea, I, Carare, RO, Minagar, A (2010) Pathophysiology of the lymphatic drainage of the central nervous system: Implications for pathogenesis and therapy of multiple sclerosis. Pathophysiology 17: pp. 295-306
    46. Klarica, M, Mise, B, Vladic, A, Rados, M, Oreskovic, D (2013) "Compensated hyperosmolarity" of cerebrospinal fluid and the development of hydrocephalus. Neuroscience 248C: pp. 278-289
    47. Welch, K (1975) The principles of physiology of the cerebrospinal fluid in relation to hydrocephalus including normal pressure hydrocephalus. Adv Neurol 13: pp. 247-332
    48. Masserman, JH (1934) Cerebrospinal hydrodynamics: IV. Clinical experimental studies. Arch Neurol Psychiat 32: pp. 523-553
    49. Heisey, SR, Held, D, Pappenheimer, JR (1962) Bulk flow and diffusion in the cerebrospinal fluid system of the goat. Am J Physiol 203: pp. 775-781
    50. Fishman, RA (2002) The cerebrospinal fluid production rate is reduced in dementia of the Alzheimer鈥檚 type. Neurology 58: pp. 1866
    51. Ekstedt, J (1978) CSF hydrodynamic studies in man. 2. Normal hydrodynamic variables related to CSF pressure and flow. J Neurol Neurosurg Psychiatry 41: pp. 345-353
    52. Rubin, RC, Henderson, ES, Ommaya, AK, Walker, MD, Rall, DP (1966) The production of cerebrospinal fluid in man and its modification by acetazolamide. J Neurosurg 25: pp. 430-436
    53. Cutler, RW, Page, L, Galicich, J, Watters, GV (1968) Formation and absorption of cerebrospinal fluid in man. Brain 91: pp. 707-720
    54. Lorenzo, AV, Page, LK, Watters, GV (1970) Relationship between cerebrospinal fluid formation, absorption and pressure in human hydrocephalus. Brain 93: pp. 679-692
    55. Rottenberg, DA, Deck, MD, Allen, JC (1978) Metrizamide washout as a measure of CSF bulk flow. Neuroradiology 16: pp. 203-206
    56. Rottenberg, DA, Howieson, J, Deck, MD (1977) The rate of CSF formation in man: preliminary observations on metrizamide washout as a measure of CSF bulk flow. Ann Neurol 2: pp. 503-510
    57. Cushing, H (1926) Studies in Intracranial physiology & surgery: the third circulation, the Hypophysis, the Gliomas : the Cameron prize lectures delivered at the University of Edinburgh, October 19鈥?2, 1925.
    58. Black, PM (1999) Harvey cushing at the Peter Bent Brigham hospital. Neurosurgery 45: pp. 990-1001
    59. Woollam, DH, Millen, JW (1955) The perivascular spaces of the mammalian central nervous system and their relation to the perineuronal and subarachnoid spaces. J Anat 89: pp. 193-200
    60. Jones, EG (1970) On the mode of entry of blood vessels into the cerebral cortex. J Anat 106: pp. 507-520
    61. Cserr, HF, Depasquale, M, Patlak, CS, Pullen, RG (1986) Convection of cerebral interstitial fluid and its role in brain volume regulation. Ann NY Acad Sci 481: pp. 123-134
    62. Bechmann, I, Kwidzinski, E, Kovac, AD, Simburger, E, Horvath, T, Gimsa, U, Dirnagl, U, Priller, J, Nitsch, R (2001) Turnover of rat brain perivascular cells. Exp Neurol 168: pp. 242-249
    63. Bechmann, I, Priller, J, Kovac, A, Bontert, M, Wehner, T, Klett, FF, Bohsung, J, Stuschke, M, Dirnagl, U, Nitsch, R (2001) Immune surveillance of mouse brain perivascular spaces by blood-borne macrophages. Eur J Neurosci 14: pp. 1651-1658
    64. Krueger, M, Bechmann, I (2010) CNS pericytes: concepts, misconceptions, and a way out. Glia 58: pp. 1-10
    65. Krahn, V (1982) The pia mater at the site of the entry of blood vessels into the central nervous system. Anat Embryol (Berl) 164: pp. 257-263
    66. Ge, S, Song, L, Pachter, JS (2005) Where is the blood鈥揵rain barrier 鈥?really?. J Neurosci Res 79: pp. 421-427
    67. Bechmann, I, Galea, I, Perry, VH (2007) What is the blood鈥揵rain barrier (not)?. Trends Immunol 28: pp. 5-11
    68. Zhang, ET, Inman, CB, Weller, RO (1990) Interrelationships of the pia mater and the perivascular (Virchow-Robin) spaces in the human cerebrum. J Anat 170: pp. 111-123
    69. Krisch, B (1988) Ultrastructure of the meninges at the site of penetration of veins through the dura mater, with particular reference to Pacchionian granulations. Investigations in the rat and two species of new-world monkeys (Cebus apella, Callitrix jacchus). Cell Tissue Res 251: pp. 621-631
    70. Krisch, B, Leonhardt, H, Oksche, A (1984) Compartments and perivascular arrangement of the meninges covering the cerebral cortex of the rat. Cell Tissue Res 238: pp. 459-474
    71. Ichimura, T, Fraser, PA, Cserr, HF (1991) Distribution of extracellular tracers in perivascular spaces of the rat brain. Brain Res 545: pp. 103-113
    72. Thal, DR (2009) The pre-capillary segment of the blood鈥揵rain barrier and its relation to perivascular drainage in Alzheimer鈥檚 disease and small vessel disease. Sci World J 9: pp. 557-563
    73. Rennels, ML, Gregory, TF, Blaumanis, OR, Fujimoto, K, Grady, PA (1985) Evidence for a 鈥榩aravascular鈥?fluid circulation in the mammalian central nervous system, provided by the rapid distribution of tracer protein throughout the brain from the subarachnoid space. Brain Res 326: pp. 47-63
    74. Zhang, ET, Richards, HK, Kida, S, Weller, RO (1992) Directional and compartmentalised drainage of interstitial fluid and cerebrospinal fluid from the rat brain. Acta Neuropathol 83: pp. 233-239
    75. Barshes, N, Demopoulos, A, Engelhard, HH (2005) Anatomy and physiology of the leptomeninges and CSF space. Cancer Treat Res 125: pp. 1-16
    76. Hutchings, M, Weller, RO (1986) Anatomical relationships of the pia mater to cerebral blood vessels in man. J Neurosurg 65: pp. 316-325
    77. Alcolado, R, Weller, RO, Parrish, EP, Garrod, D (1988) The cranial arachnoid and pia mater in man: anatomical and ultrastructural observations. Neuropath Appl Neurobiol 14: pp. 1-17
    78. Brightman, MW, Palay, SL (1963) The fine structure of Ependyma in the brain of the rat. J Cell Biol 19: pp. 415-439
    79. Hadaczek, P, Yamashita, Y, Mirek, H, Tamas, L, Bohn, M, Noble, C, Park, J, Bankiewicz, K (2006) The "Perivascular Pump" driven by arterial pulsation is a powerful mechanism for the distribution of therapeutic molecules within the brain. Mol Ther 14: pp. 69-78
    80. Szentistvanyi, I, Patlak, CS, Ellis, RA, Cserr, HF (1984) Drainage of interstitial fluid from different regions of rat brain. Am J Physiol 246: pp. F835-F844
    81. Weller, RO, Kida, S, Zhang, ET (1992) Pathways of fluid drainage from the brain鈥搈orphological aspects and immunological significance in rat and man. Brain Pathol 2: pp. 277-284
    82. Weller, RO, Djuanda, E, Yow, HY, Carare, RO (2009) Lymphatic drainage of the brain and the pathophysiology of neurological disease. Acta Neuropathol 117: pp. 1-14
    83. Carare, RO, Bernardes-Silva, M, Newman, TA, Page, AM, Nicoll, JA, Perry, VH, Weller, RO (2008) Solutes, but not cells, drain from the brain parenchyma along basement membranes of capillaries and arteries: significance for cerebral amyloid angiopathy and neuroimmunology. Neuropathol Appl Neurobiol 34: pp. 131-144
    84. Preston, SD, Steart, PV, Wilkinson, A, Nicoll, JA, Weller, RO (2003) Capillary and arterial cerebral amyloid angiopathy in Alzheimer鈥檚 disease: defining the perivascular route for the elimination of amyloid beta from the human brain. Neuropathol Appl Neurobiol 29: pp. 106-117
    85. Carare, RO, Hawkes, CA, Jeffrey, M, Kalaria, RN, Weller, RO (2013) Review: cerebral amyloid angiopathy, prion angiopathy, CADASIL and the spectrum of protein elimination failure angiopathies (PEFA) in neurodegenerative disease with a focus on therapy. Neuropathol Appl Neurobiol 39: pp. 593-611
    86. Carare, RO, Hawkes, CA, Weller, RO (2014) Afferent and efferent immunological pathways of the brain. Anatomy, function and failure. Brain. Behav Immun 36: pp. 9-14
    87. Hawkes, CA, Hartig, W, Kacza, J, Schliebs, R, Weller, RO, Nicoll, JA, Carare, RO (2011) Perivascular drainage of solutes is impaired in the ageing mouse brain and in the presence of cerebral amyloid angiopathy. Acta Neuropathol 121: pp. 431-443
    88. Iliff, JJ, Lee, H, Yu, M, Feng, T, Logan, J, Nedergaard, M, Benveniste, H (2013) Brain-wide pathway for waste clearance captured by contrast-enhanced MRI. J Clin Invest 123: pp. 1299-1309
    89. Davson, H, Kleeman, CR, Levin, E The blood brain barrier. In: Hoghen, AM, Lindgren, P eds. (1963) Drugs and Membranes, Volume 4. Pergamon Press, Oxford, pp. 71-94
    90. Patlak, CS, Fenstermacher, JD (1975) Measurements of dog blood鈥揵rain transfer constants by ventriculocisternal perfusion. Am J Physiol 229: pp. 877-884
    91. Nicholson, C, Phillips, JM (1979) Diffusion of anions and cations in the extracellular micro-environment of the brain [proceedings]. J Physiol 296: pp. 66P
    92. Sykova, E, Nicholson, C (2008) Diffusion in brain extracellular space. Physiol Rev 88: pp. 1277-1340
    93. Wolak, DJ, Thorne, RG (2013) Diffusion of macromolecules in the brain: implications for drug delivery. Molec Pharmaceutics 10: pp. 1492-1504
    94. Cserr, HF, Harling-Berg, CJ, Knopf, PM (1992) Drainage of brain extracellular fluid into blood and deep cervical lymph and its immunological significance. Brain Pathol 2: pp. 269-276
    95. Iliff, JJ, Wang, M, Liao, Y, Plogg, BA, Peng, W, Gundersen, GA, Benveniste, H, Vates, GE, Deane, R, Goldman, SA, Nagelhus, EA, Nedergaard, M (2012) A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci Transl Med 4: pp. 147ra111
    96. MacAulay, N, Zeuthen, T (2010) Water transport between CNS compartments: contributions of aquaporins and cotransporters. Neuroscience 168: pp. 941-956
    97. Papadopoulos, MC, Verkman, AS (2013) Aquaporin water channels in the nervous system. Nat Rev Neurosci 14: pp. 265-277
    98. Tait, MJ, Saadoun, S, Bell, BA, Papadopoulos, MC (2008) Water movements in the brain: role of aquaporins. Trends Neurosci 31: pp. 37-43
    99. Bering, EA (1952) Water exchange of central nervous system and cerebrospinal fluid. J Neurosurg 9: pp. 275-287
    100. Bateman, GA (2005) Extending the hydrodynamic hypothesis in chronic hydrocephalus. Neurosurg Rev 28: pp. 333-334
    101. Mamonov, AB, Coalson, RD, Zeidel, ML, Mathai, JC (2007) Water and deuterium oxide permeability through aquaporin 1: MD predictions and experimental verification. J Gen Physiol 130: pp. 111-116
    102. Ibata, K, Takimoto, S, Morisaku, T, Miyawaki, A, Yasui, M (2011) Analysis of aquaporin-mediated diffusional water permeability by coherent anti-stokes Raman scattering microscopy. Biophysical J 101: pp. 2277-2283
    103. Johanson, CE, Stopa, EG, McMillan, PN (2011) The blood-cerebrospinal fluid barrier: structure and functional significance. Meth Molec Biol 686: pp. 101-131
    104. Praetorius, J, Nielsen, S (2006) Distribution of sodium transporters and aquaporin-1 in the human choroid plexus. Am J Physiol Cell Physiol 291: pp. C59-C67
    105. Brown, PD, Davies, SL, Speake, T, Millar, ID (2004) Molecular mechanisms of cerebrospinal fluid production. Neuroscience 129: pp. 957-970
    106. Owler, BK, Pitham, T, Wang, D (2010) Aquaporins: relevance to cerebrospinal fluid physiology and therapeutic potential in hydrocephalus. Cerebrospinal Fluid Res 7: pp. 15
    107. Bradbury, MWB, Cserr, H Drainage of cerebral interstitial fluid and of cerebrospinal fluid into lymphatics. In: Johnston, MG eds. (1985) Experimental Biology of the lymphatic circulation. Elsevier Science Publishers, Amsterdam
    108. Abbott, NJ, Patabendige, AA, Dolman, DE, Yusof, SR, Begley, DJ (2010) Structure and function of the blood鈥揵rain barrier. Neurobiol Dis 37: pp. 13-25
    109. Neuwelt, EA, Bauer, B, Fahlke, C, Fricker, G, Iadecola, C, Janigro, D, Leybaert, L, Molnar, Z, O'Donnell, ME, Povlishock, JT, Saunders, NR, Sharp, F, Stanimirovic, D, Watts, RJ, Drewes, LR (2011) Engaging neuroscience to advance translational research in brain barrier biology. Nat Rev Neurosci 12: pp. 169-182
    110. Abbott, NJ (2013) Blood鈥揵rain barrier structure and function and the challenges for CNS drug delivery. J Inherit Metab Dis 36: pp. 437-449
    111. Neuwelt, EA (2004) Mechanisms of disease: the blood鈥揵rain barrier. Neurosurgery 54: pp. 131-142
    112. Mathiisen, TM, Lehre, KP, Danbolt, NC, Ottersen, OP (2010) The perivascular astroglial sheath provides a complete covering of the brain microvessels: an electron microscopic 3D reconstruction. Glia 58: pp. 1094-1103
    113. Rash, JE, Yasumura, T, Hudson, CS, Agre, P, Nielsen, S (1998) Direct immunogold labeling of aquaporin-4 in square arrays of astrocyte and ependymocyte plasma membranes in rat brain and spinal cord. Proc Natl Acad Sci U S A 95: pp. 11981-11986
    114. Nielsen, S, Nagelhus, EA, Amiry-Moghaddam, M, Bourque, C, Agre, P, Ottersen, OP (1997) Specialized membrane domains for water transport in glial cells: high-resolution immunogold cytochemistry of aquaporin-4 in rat brain. J Neurosci 17: pp. 171-180
    115. Haj-Yasein, NN, Vindedal, GF, Eilert-Olsen, M, Gundersen, GA, Skare, O, Laake, P, Klungland, A, Thoren, AE, Burkhardt, JM, Ottersen, OP, Nagelhus, EA (2011) Glial-conditional deletion of aquaporin-4 (Aqp4) reduces blood鈥揵rain water uptake and confers barrier function on perivascular astrocyte endfeet. Proc Natl Acad Sci U S A 108: pp. 17815-17820
    116. Zelenina, M (2010) Regulation of brain aquaporins. Neurochem Int 57: pp. 468-488
    117. Day, RE, Kitchen, P, Owen, D, Bland, C, Marshall, L, Conner, AC, Bill, RM, Conner, MT (2014) Human aquaporins: regulators of transcellular water flow. Biochim Biophys Acta 1840: pp. 1492-1506
    118. Badaut, J, Lasbennes, F, Magistretti, PJ, Regli, L (2002) Aquaporins in brain: distribution, physiology, and pathophysiology. J Cereb Blood Flow Metab 22: pp. 367-378
    119. Agre, P (2006) The aquaporin water channels. Proc Am Thorac Soc 3: pp. 5-13
    120. Benfenati, V, Ferroni, S (2010) Water transport between CNS compartments: functional and molecular interactions between aquaporins and ion channels. Neuroscience 168: pp. 926-940
    121. Chai, RC, Jiang, JH, Kwan Wong, AY, Jiang, F, Gao, K, Vatcher, G, Hoi Yu, AC (2013) AQP5 is differentially regulated in astrocytes during metabolic and traumatic injuries. Glia 61: pp. 1748-1765
    122. Igarashi, H, Tsujita, M, Kwee, IL, Nakada, T (2014) Water influx into cerebrospinal fluid is primarily controlled by aquaporin-4, not by aquaporin-1: 17O JJVCPE MRI study in knockout mice. Neuroreport 25: pp. 39-43
    123. Suzuki, Y, Nakamura, Y, Yamada, K, Huber, VJ, Tsujita, M, Nakada, T (2013) Aquaporin-4 positron emission tomography imaging of the human brain: first report. J Neuroimaging 23: pp. 219-223
    124. Yukutake, Y, Yasui, M (2010) Regulation of water permeability through aquaporin-4. Neuroscience 168: pp. 885-891
    125. Verkman, AS, Binder, DK, Bloch, O, Auguste, K, Papadopoulos, MC (2006) Three distinct roles of aquaporin-4 in brain function revealed by knockout mice. Biochim Biophys Acta 1758: pp. 1085-1093
    126. Oshio, K, Binder, DK, Bollen, A, Verkman, AS, Berger, MS, Manley, GT (2003) Aquaporin-1 expression in human glial tumors suggests a potential novel therapeutic target for tumor-associated edema. Acta Neurochir Suppl 86: pp. 499-502
    127. Oshio, K, Binder, DK, Liang, Y, Bollen, A, Feuerstein, B, Berger, MS, Manley, GT (2005) Expression of the aquaporin-1 water channel in human glial tumors. Neurosurgery 56: pp. 375-381
    128. Igarashi, H, Tsujita, M, Kwee, IL, Nakada, T (2013) Inhibition of aquaporin-4 significantly increases regional cerebral blood flow. Neuroreport 24: pp. 324-328
    129. Cserr, HF (1974) Relationship between cerebrospinal fluid and interstitial fluid of brain. Fed Proc 33: pp. 2075-2078
    130. Yang, M, Gao, F, Liu, H, Yu, WH, He, GQ, Zhuo, F, Qiu, GP, Sun, SQ (2011) Immunolocalization of aquaporins in rat brain. Anat Histol Embryol 40: pp. 299-306
    131. Neely, JD, Amiry-Moghaddam, M, Ottersen, OP, Froehner, SC, Agre, P, Adams, ME (2001) Syntrophin-dependent expression and localization of Aquaporin-4 water channel protein. Proc Natl Acad Sci U S A 98: pp. 14108-14113
    132. Connors, NC, Kofuji, P (2006) Potassium channel Kir4.1 macromolecular complex in retinal glial cells. Glia 53: pp. 124-131
    133. Amiry-Moghaddam, M, Frydenlund, DS, Ottersen, OP (2004) Anchoring of aquaporin-4 in brain: molecular mechanisms and implications for the physiology and pathophysiology of water transport. Neuroscience 129: pp. 999-1010
    134. Vajda, Z, Pedersen, M, Fuchtbauer, EM, Wertz, K, Stodkilde-Jorgensen, H, Sulyok, E, Doczi, T, Neely, JD, Agre, P, Frokiaer, J, Nielsen, S (2002) Delayed onset of brain edema and mislocalization of aquaporin-4 in dystrophin-null transgenic mice. Proc Natl Acad Sci U S A 99: pp. 13131-13136
    135. Nagelhus, EA, Horio, Y, Inanobe, A, Fujita, A, Haug, FM, Nielsen, S, Kurachi, Y, Ottersen, OP (1999) Immunogold evidence suggests that coupling of K鈥?鈥塻iphoning and water transport in rat retinal Muller cells is mediated by a coenrichment of Kir4.1 and AQP4 in specific membrane domains. Glia 26: pp. 47-54
    136. Nagelhus, EA, Mathiisen, TM, Ottersen, OP (2004) Aquaporin-4 in the central nervous system: cellular and subcellular distribution and coexpression with KIR4.1. Neuroscience 129: pp. 905-913
    137. Verkman, AS (2009) Knock-out models reveal new aquaporin functions. Handb Exp Pharmacol 190: pp. 359-381
    138. Zador, Z, Stiver, S, Wang, V, Manley, GT (2009) Role of aquaporin-4 in cerebral edema and stroke. Handb Exp Pharmacol 190: pp. 159-170
    139. Bloch, O, Auguste, KI, Manley, GT, Verkman, AS (2006) Accelerated progression of kaolin-induced hydrocephalus in aquaporin-4-deficient mice. J Cereb Blood Flow Metab 26: pp. 1527-1537
    140. Solenov, E, Watanabe, H, Manley, GT, Verkman, AS (2004) Sevenfold-reduced osmotic water permeability in primary astrocyte cultures from AQP-4-deficient mice, measured by a fluorescence quenching method. Am J Physiol Cell Physiol 286: pp. C426-432
    141. Papadopoulos, MC, Verkman, AS (2005) Aquaporin-4 gene disruption in mice reduces brain swelling and mortality in pneumococcal meningitis. J Biol Chem 280: pp. 13906-13912
    142. Manley, GT, Fujimura, M, Ma, T, Noshita, N, Filiz, F, Bollen, AW, Chan, P, Verkman, AS (2000) Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat Med 6: pp. 159-163
    143. Saadoun, S, Tait, MJ, Reza, A, Davies, DC, Bell, BA, Verkman, AS, Papadopoulos, MC (2009) AQP4 gene deletion in mice does not alter blood鈥揵rain barrier integrity or brain morphology. Neuroscience 161: pp. 764-772
    144. Li, X, Kong, H, Wu, W, Xiao, M, Sun, X, Hu, G (2009) Aquaporin-4 maintains ependymal integrity in adult mice. Neuroscience 162: pp. 67-77
    145. Bulat, M, Lupret, V, Oreskovic, D, Klarica, M (2008) Transventricular and transpial absorption of cerebrospinal fluid into cerebral microvessels. Coll Antropol 32: pp. 43-50
    146. O'Donnell, M (1985) NMR blood flow imaging using multiecho, phase contrast sequences. Med Phys 12: pp. 59-64
    147. Bradley, WG, Kortman, KE, Burgoyne, B (1986) Flowing cerebrospinal fluid in normal and hydrocephalic states: appearance on MR images. Radiology 159: pp. 611-616
    148. Feinberg, DA, Mark, AS (1987) Human brain motion and cerebrospinal fluid circulation demonstrated with MR velocity imaging. Radiology 163: pp. 793-799
    149. Nitz, WR, Bradley, WG, Watanabe, AS, Lee, RR, Burgoyne, B, O'Sullivan, RM, Herbst, MD (1992) Flow dynamics of cerebrospinal fluid: assessment with phase-contrast velocity MR imaging performed with retrospective cardiac gating. Radiology 183: pp. 395-405
    150. Bradley, WG, Scalzo, D, Queralt, J, Nitz, WN, Atkinson, DJ, Wong, P (1996) Normal-pressure hydrocephalus: evaluation with cerebrospinal fluid flow measurements at MR imaging. Radiology 198: pp. 523-529
    151. Yoshida, K, Takahashi, H, Saijo, M, Ueguchi, T, Tanaka, H, Fujita, N, Murase, K (2009) Phase-contrast MR studies of CSF flow rate in the cerebral aqueduct and cervical subarachnoid space with correlation-based segmentation. Magn Reson Med Sci 8: pp. 91-100
    152. Penn, RD, Basati, S, Sweetman, B, Guo, X, Linninger, A (2011) Ventricle wall movements and cerebrospinal fluid flow in hydrocephalus. J Neurosurg 115: pp. 159-164
    153. Piechnik, SK, Summers, PE, Jezzard, P, Byrne, JV (2008) Magnetic resonance measurement of blood and CSF flow rates with phase contrast鈥搉ormal values, repeatability and CO2 reactivity. Acta Neurochir Suppl 102: pp. 263-270
    154. Gideon, P, Stahlberg, F, Thomsen, C, Gjerris, F, Sorensen, PS, Henriksen, O (1994) Cerebrospinal fluid flow and production in patients with normal pressure hydrocephalus studied by MRI. Neuroradiology 36: pp. 210-215
    155. Huang, TY, Chung, HW, Chen, MY, Giiang, LH, Chin, SC, Lee, CS, Chen, CY, Liu, YJ (2004) Supratentorial cerebrospinal fluid production rate in healthy adults: quantification with two-dimensional cine phase-contrast MR imaging with high temporal and spatial resolution. Radiology 233: pp. 603-608
    156. Kim, DS, Choi, JU, Huh, R, Yun, PH, Kim, DI (1999) Quantitative assessment of cerebrospinal fluid hydrodynamics using a phase-contrast cine MR image in hydrocephalus. Child鈥檚 Nerv Syst 15: pp. 461-467
    157. Badaut, J, Ashwal, S, Adami, A, Tone, B, Recker, R, Spagnoli, D, Ternon, B, Obenaus, A (2011) Brain water mobility decreases after astrocytic aquaporin-4 inhibition using RNA interference. J Cereb Blood Flow Metab 31: pp. 819-831
    158. Chikly, B, Quaghebeur, J (2013) Reassessing cerebrospinal fluid (CSF) hydrodynamics: a literature review presenting a novel hypothesis for CSF physiology. J Bodyw Mov Ther 17: pp. 344-354
    159. Greitz, D, Greitz, T, Hindmarsh, T (1997) We need a new understanding of the reabsorption of cerebrospinal fluid鈥揑I. Acta Paediatr 86: pp. 1148
    160. Klarica, M, Oreskovic, D, Bozic, B, Vukic, M, Butkovic, V, Bulat, M (2009) New experimental model of acute aqueductal blockage in cats: effects on cerebrospinal fluid pressure and the size of brain ventricles. Neuroscience 158: pp. 1397-1405
    161. Nedergaard, M (2013) Neuroscience. Garbage truck of the brain. Science 340: pp. 1529-1530
    162. Foldi, M, Csillik, B, Zoltan, OT (1968) Lymphatic drainage of the brain. Experientia 24: pp. 1283-1287
    163. Xie, L, Kang, H, Xu, Q, Chen, MJ, Liao, Y, Thiyagarajan, M, O'Donnell, J, Christensen, DJ, Nicholson, C, Iliff, JJ, Takano, T, Deane, R, Nedergaard, M (2013) Sleep drives metabolite clearance from the adult brain. Science 342: pp. 373-377
    164. Greitz, D, Hannerz, J (1996) A proposed model of cerebrospinal fluid circulation: observations with radionuclide cisternography. AJNR 17: pp. 431-438
    165. Yang, L, Kress, BT, Weber, HJ, Thiyagarajan, M, Wang, B, Deane, R, Benveniste, H, Iliff, JJ, Nedergaard, M (2013) Evaluating glymphatic pathway function utilizing clinically relevant intrathecal infusion of CSF tracer. J Transl Med 11: pp. 107
  • 刊物主题:Neurosciences; Neurology;
  • 出版者:BioMed Central
  • ISSN:2045-8118
文摘
According to the traditional understanding of cerebrospinal fluid (CSF) physiology, the majority of CSF is produced by the choroid plexus, circulates through the ventricles, the cisterns, and the subarachnoid space to be absorbed into the blood by the arachnoid villi. This review surveys key developments leading to the traditional concept. Challenging this concept are novel insights utilizing molecular and cellular biology as well as neuroimaging, which indicate that CSF physiology may be much more complex than previously believed. The CSF circulation comprises not only a directed flow of CSF, but in addition a pulsatile to and fro movement throughout the entire brain with local fluid exchange between blood, interstitial fluid, and CSF. Astrocytes, aquaporins, and other membrane transporters are key elements in brain water and CSF homeostasis. A continuous bidirectional fluid exchange at the blood brain barrier produces flow rates, which exceed the choroidal CSF production rate by far. The CSF circulation around blood vessels penetrating from the subarachnoid space into the Virchow Robin spaces provides both a drainage pathway for the clearance of waste molecules from the brain and a site for the interaction of the systemic immune system with that of the brain. Important physiological functions, for example the regeneration of the brain during sleep, may depend on CSF circulation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700