Determination of the utility of groundwater with respect to the geochemical parameters: a case study from Tuticorin District of Tamil Nadu (India)
详细信息    查看全文
  • 作者:C. Singaraja (1)
    S. Chidambaram (1)
    P. Anandhan (1)
    M. V. Prasanna (1) (2)
    C. Thivya (1)
    R. Thilagavathi (1)
    J. Sarathidasan (1)
  • 关键词:Groundwater ; Coastal aquifer ; Electrical conductivity ; Water quality index ; Domestic and irrigation
  • 刊名:Environment, Development and Sustainability
  • 出版年:2014
  • 出版时间:June 2014
  • 年:2014
  • 卷:16
  • 期:3
  • 页码:689-721
  • 全文大小:
  • 参考文献:1. Ahmed, S. S., Mazumder, H., Jahan, C. S., Ahmed, M., & Islam, S. (2002). Hydrochemistry and classification of groundwater, Rajshahi City Corporation Area, Bangladesh. / Journal of the Geological Society of India, / 60, 411-18.
    2. Anandhan, P., Ramanathan, A. L., Chidambaram, S., Manivannan, R., Ganesh, N., & Srinivasamoorthy, K. (2000). / A study on the seasonal variation in the geochemistry of the groundwater in around Neyveli region, Tamilnadu. Of International Seminar on Applied Hydrogeochemistry, (ISAH-0), Annamalai University, 86-05?pp.
    3. Andrew, A. A., Shimada, J., Hosono, T., Ichiyanagi, K., Nkeng, G. E., Fantong, W. Y., et al. (2011). Evaluation of groundwater quality and its suitability for drinking, domestic, and agricultural uses in the Banana Plain (Mbanga, Njombe, Penja) of the Cameroon Volcanic Line. / Environmental Geochemistry and Health, / 33, 559-75. doi:10.1007/s10653-010-9371-1 . CrossRef
    4. APHA. (1992). / Standard methods for the examination of water and wastewater (p. 326). Washington, DC: American Public Health Association.
    5. Avvannavar, S. M., & Shrihari, S. (2008). Evaluation of water quality index for drinking purposes for river Netravathi, Mangalore, South India. / Environmental Monitoring and Assessment, / 143, 279-90. CrossRef
    6. Ayers, R. S., & Westcot, D. W. (1985). / Water quality for agriculture FAO irrigation and drain. Paper no 29(1), 1-09.
    7. Bathrellos, G. D., Skilodimou, H. D., Kelepertsis, A., Alexakis, D., Chrisanthaki, I., & Archonti, D. (2008). Environmental research of groundwater in the urban and suburban areas of Attica region, Greece. / Environmental Geology, / 56, 11-8. CrossRef
    8. Belgiorno, V., & Napoli, R. M. (2000). Groundwater quality monitorin. / Water Science & Technology, 42(1-), 37-1.
    9. Bhargava, D. S., & Killender, D. J. (1988). The technology of water resources in industries. A rational approach. / Journal Industrial Water Works Association, / 20, 107-12.
    10. Bohlke, J. K. (2002). Groundwater recharge and agricultural contamination. / Hydrogeology Journal, / 10, 153-79. CrossRef
    11. Bouwer, H. (1978). / Groundwater quality, groundwater hydrology (pp. 339-75). Mc.Graw-Hill Kogakusha Ltd.
    12. Cao, J., Zhao, Y., Lin, J. W., Xirao, R. D., & Danzeng, S. B. (2000). Environmental fluoride in Tibet. / Environmental Research, / 83, 333-37. CrossRef
    13. CGWB. (2009). / South Eastern Coastal Region District groundwater brochure. Tamil Nadu: Tuticorin district.
    14. Chandu, S. N., Subbarao, V., & Raviprekash, S. (2008). Suitability of groundwater for domestic and irrigational purpose in some parts of Jhansi District, India. / Bhu-jal New, / 10, 12-8.
    15. Chaturvedi, (1990). Defluoridation of water by adsorption on fly ash. / Water, Air, and Soil pollution, / 49, 51-1. CrossRef
    16. Chidambaram, S. (2000). / Hydrogeochemical studies of groundwater in Periyar district, Tamilnadu, India. unpublished Ph.D. thesis, Department of Geology, Annamalai University, Tamilnadu, India.
    17. Chidambaram, S., Bala Krishna Prasad, M., Manivannan, R., Karmegam, U., Singaraja, C., Anandhan, P., et al. (2012). Environmental hydrogeochemistry and genesis of fluoride in groundwaters of Dindigul district, Tamilnadu (India). / Environmental Earth Science, / 68(2), 333-42. doi:10.1007/s12665-012-1741-9 .
    18. Chidambaram, S., Ramanathan, A. L., Prasanna, M. V., Anandhan, P, Srinivasamoorthy, K., & Vasudeven, S. (2007). Identification of Hrogeochemically Active Regimes in Groundwaters of Erode District, Tamilnadu A Statistical Approach. / Asian Journal of water, Environment and pollution, / 5(3), 93-02.
    19. Chidambaram, S., Ramanathan, A. L., Prasanna, M. V., Karmegam, U., Dheivanayagi, V., & Ramesh, R. (2010). Study on the hydrogeochemical characteristics in groundwater, post- and pre-tsunami scenario, from Portnova to Pumpuhar, southeast coast of India. / Environmental Monitoring and Assessment, / 169, 553-68. CrossRef
    20. Chidambaram, S., Ramanathan, A. L., & Srinivasamoorthy, K. (2003). / Lithological influence on the groundwater chemistry, Periyar District a case study. In: Conference on coastal and freshwater issues, Paper 7.
    21. Chidambaram, S., Ramanathan, A. L., Srinivasamoorthy, K., & Anandhan, P. (2003). / WATCLAST-em class="a-plus-plus">a computer program for hydrogeochemical studies. Recent trends in Hydrogeochemistry ( / case studies from surface and subsurface waters of selected countries) (pp. 203-07). New Delhi: Capital Publishing Company.
    22. Deepu, T. R., & Shaji, E. (2011). Fluoride contamination in groundwater resources of Chittur block, Palghat district, Kerala, India—A health risk. Disaster, Risk and Vulnerablity Conference 2011. School of Environmental Sciences, Mahatma Gandhi University, India in association with the Applied Geoinformatics for Society and Environment, Germany March 12-4.
    23. Doneen, L. D. (1954). Salination of soil by salts in the irrigation water. / Transcation, American Geophysical Union, / 35, 943-50. CrossRef
    24. Eaton, F. M. (1950). Significance of carbonates in irrigation waters. / Soil Science, / 69, 123-33. CrossRef
    25. Eaton, A. D., Clesceri, L., & Greenberg, A. E. (1995). / Standard methods for the examination of water and wastewater (Vol. 19th). Washington, DC: American Public Health Association.
    26. Farooqi, A., Masuda, H., & Firdous, N. (2007). Toxic fluoride and arsenic contaminated groundwater in the Lahore and Kasur districts, Punjab, Pakistan and possible contaminant sources. / Journal of Environmental Pollution, / 145, 839-49. CrossRef
    27. Forstner, U. K., & Wittman, G. T. W. (1981). / Metal pollution in the aquatic environment (p. 255). Berlin, Heidelberg: Springer. CrossRef
    28. Freeze, A. R., & Cherry, J. A. (1979). / Groundwater (p. 604). Englewood Cliffs: Prentice-Hall.
    29. Gaciri, S. J., & Davies, T. C. (1993). The occurrence and geochemistry of fluonde in some natural waters of Kenya. / Journal of Hydrology, 143, 395-12.
    30. Gangai, I. P. D., & Ramachandran, S. (2010). The role of spatial planning in coastal management—A case study of Tuticorin coast (India). / Land Use Policy, / 27, 518-34. CrossRef
    31. Gupta, I. C. (1990). / Use of saline water in Agriculture, A Study of Arid and Semiarid Zones of India, Revised Edn. New Delhi: Oxford and IBH Publishing Co, Pvt. Ltd.
    32. Gupta, S. K., Deshpande, R. D., Agarwal, M., & Raval, B. R. (2005). Origin of high fluoride in groundwater in theNorth Gujarat-Cambay region, India. / Hydrogeology Journal, / 13, 596-05. CrossRef
    33. Gupta, S. K., & Gupta, I. C. (1987). / Management of saline soils and waters (p. 339). New Delhi: Oxford and IBH Publishing and Co.
    34. Handa, B. K. (1964). Modified classification procedure for rating irrigation waters. / Soil Science, / 98(2), 264-69. CrossRef
    35. Handa, B. K. (1975). Geochemistry and genesis of fluoride containing groundwater in India. / Ground Water, / 13, 275-81. CrossRef
    36. Hem, J. O. (1959). / Study and interpretation of chemical characteristics of natural water (p. 1473). U.G: Geological Survey Water Supply Paper.
    37. Hussain, J., Hussain, I., & Sharma, K. C. (2010). Fluoride and health hazards: community perception in a fluorotic area of Central Rajasthan (India): an arid environment. / Environmental Monitoring and Assessment, / 162, 1-4. CrossRef
    38. Hussain, I., Hussain, J., Sharma, K. C., & Ojha, K. G. (2002) / . Fluoride in drinking water and health hazardous: Some observations on fluoride distribution Rajasthan. In environmental scenario of 21st century (pp. 355-74). New Delhi: APH.
    39. Jacks, G., Bhattacharya, P., Choudary, V., & Singh, K. P. (2005). Controls on the genesis of some high fluoride ground waters in India. / Applied Geochemistry, / 20, 221-28. CrossRef
    40. Jalali, M. (2007). Hydrochemical identification of groundwater resources and their changes under the impacts of human activity in the Chah basin in western Iran. / Environmental Monitoring and Assessment, / 130, 347-64. CrossRef
    41. Jalali, M. (2008). Geochemistry characterization of groundwater in an agricultural area of Razan, Hamadan, Iran. / Environmental Geology, / 51, 433-46. CrossRef
    42. Jalali, M., & Kolahchi, Z. (2008). Groundwater quality in an irrigated, agricultural area of northern Malayer, western Iran. / Nutrient Cycling in Agroecosystems, / 80, 95-05. CrossRef
    43. JanardhanaRaju, N. (2007). Hydrogeochemical parameters for assessment of groundwater quality in the upper Gunjanaeru River basin, Cuddapah District, Andhra Pradesh, South India. / Environmental Geology, / 52, 1067-074. doi:10.1007/s00254-006-0546-0 . CrossRef
    44. Joshi, D. M., Kumar, A., & Agrawal, N. (2009). Assessment of the irrigation water quality of river Ganga in Haridwar District India. / Journal of chemistry, / 2(2), 285-92.
    45. Joshi, M. C., Thukrai, A. K., & Chand, R. (1982). Water pollution due to tailings from copper complex KhetrinagerJhunJundu District, Rajasthan. / Indian Journal of Environmental Health, / 24, 292-97.
    46. Jubb, T. F., Annand, T. E., Main, D. C., & Murphy, G. M. (1993). Phosphorus supplements and fluorosis in Cattle—A northern Australian experience. / Australian Veterinary Journal, / 70, 379-83. CrossRef
    47. Kakar, Y., Sikka, P., Dasjaneshwar, V. M., & Bhatnagar, N. C. (1989). / Hydrogeochemistry and pollution of ground water in fabricated areas, Haryana (pp. 1-1). Chandigarch, India: Central Groundwater Board.
    48. Kelly, W. P. (1963). Use of Saline Irrigation Water. / Soil Science, 95(4), 355-391.
    49. Kelly, W. E. (1976). Geoelectric sounding for delineating groundwater contamination. / Ground Water, / 14, 6-0. CrossRef
    50. Krishnappa, A. N., & Shinde, J. E. (1980). / Fact of N labelled urea fertilized under conditions of tropical flooded rice culture (p. 127). Vienna: IAEA.
    51. Krishnaswamy, V., Ravichandran, S., Tamilselvam, C., Lawrence, A. R., & Stuart, M. E. (1993). / Impact of Agriculture and groundwater quality in the alluvial aquifer of Madras, India. Keyworth Nottingham, shiri, UK: British Geological Survey.
    52. Kumar, M., Kumari, K., Singh, U. K., & Ramananthan, A. L. (2009). Hydrogeochemical processes in the groundwater environment of Muktsar, Punjab: Conventional graphical and multivariate statistical approach. / Environmental Geology, / 57, 873-84. CrossRef
    53. Kundu, N., Panigrahi, M. K., Tripathy, S., Munshi, S., Powell, M. A., & Hart, B. R. (2001). Geochemical appraisal of fluoride contamination of groundwater in the Nayagarh district of Orissa, India. / Environmental Geology, / 41, 451-60. CrossRef
    54. Laluraj, C. M., Gopinath, G., & Dineshkumar, P. K. (2005). Groundwater chemistry of shallow aquifers in the coastal zones of Cochin, India. / Applied Geology and Environmental Research, / 3(1), 133-39.
    55. Li, Z., Tainosho, Y., Shiraishi, K., & Owada, M. (2003). Chemical characteristics of fluorine-bearing biotite of early Paleozoic plutonic rocks from the Sor Rondane Mountains. / East Antarctica Geochemical Journal, / 37, 145-61. CrossRef
    56. Liu, C. W., Lin, K. H., & Kuo, Y. M. (2003). Application of factor analysis in the assessment of groundwater quality in a Blackfoot disease area in Taiwan. / Science of the Total Environment, / 313, 77-9. CrossRef
    57. Manikandan, S., Chidambaram, S., Ramanathan, A. L., Prasanna, M. V., Karmegam, U., Singaraja, C., et al. (2012). A study on the high fluoride concentration in the magnesium-rich waters of hard rock aquiferin Krishnagiri district, Tamilnadu, India. / Arabian Journal of Geosciences,. doi:10.1007/s12517-012-0752-x .
    58. ManishKumar, K., Singh, U., & Ramananthan, A. L. (2009). Hydrogeochemical processes in the groundwater environment of Muktsar, Punjab: Conventional graphical and multivariate approach. / Environmental Geology, 57, 873-84. doi:10.1007/s00254-008-1367-0 .
    59. Miller, G. T. (1979). / Living in the environment: Belmond California (p. 470). USA: Wadsworth Publishing Company.
    60. Milovanovic, M. (2007). Water quality assessment and determination of pollution sources along the Axios/Vardar River, Southeastern Europe. / Desalination, / 213, 159-73. CrossRef
    61. Mishra, P. C., & Patel, R. K. (2001). Study of the pollution load in the drinking water of Rairangpur, a small tribal dominated town of North Orissa. / Indian Journal of Environment and Ecoplanning, / 5(2), 293-98.
    62. Mitra, B. K. (1998). Spatial and temporal variation of ground water quality in sand dune area of aomori prefecture in Japan, Paper number 062023, 2006 ASAE Annual Meeting.
    63. Mohan, R., Singh, A. K., Tripathi, J. K., & Chowdhary, G. C. (2000). Hydrochemistry and quality assessment of groundwater in Naini industrial area, Allahabad District, Uttapradesh. / Journal of the Geological Society of India, / 55, 77-0.
    64. Mondal, P., Majumder, C. B., & Mohanty, B. (2008). Effects of adsorbent dose, its particle size and initial arsenic concentration on the removal of arsenic, iron and manganese from simulated ground water by Fe3+ impregnated activated carbon. / Journal of Hazardous Materials, / 150, 695-02. CrossRef
    65. Mondal, N. C., Singh, V. S., & Rangarajan, R. (2009). Aquifer characteristics and its modeling around an industrial complex, Tuticorin, Tamil Nadu, India: A case study. / Journal of Earth System Sciences, / 188(3), 231-44. CrossRef
    66. Mondal, N. C., Singh, V. P., Singh, S., & Singh, V. S. (2011). Hydrochemical characteristic of coastal aquifer from Tuticorin, Tamil Nadu, India. / Environmental Monitoring and Assessment, / 175, 531-50. doi:10.1007/s10661-010-1549-6 . CrossRef
    67. Nordstrom, D. K., Ball, J. W., Donahoe, R. J., & Whittemore, D. (1989). Groundwater chemistry and water–rock interactions at Stripa. / Geochimica et Cosmochimica Acta, / 53, 1727-740. CrossRef
    68. Oinam, J. D., Ramanathan, A. L., & Singh, G. (2012). Geochemical and statistical evaluation of groundwater in Imphal and Thoubal district of Manipur, India. / Journal of Asian Earth Sciences, / 48, 136-49. CrossRef
    69. Oladeji, O. S., Adewoye, A. O., & Adegbola, A. A. (2012). Suitability assessment of groundwater resources for irrigation around Otte Village, Kwara State, Nigeria. / International Journal of Applied Sciences and Engineering Research, 1(3), 437-45.
    70. Polemio, M., Dragone, V., & Limoni, P. P. (2006). / Salt contamination in Apulian aquifer: Spatial and time trend. In / Proceedings of 1st SWIM- / SWICA ( / 19th Salt Water Intrusion Meeting-em class="a-plus-plus">3rd Salt Water Intrusion in Coastal Aquifers), Cagliari.
    71. Prasad, N. B. N. (1984). / Hydrogeological studies in the Bhadra River Basin. Ph.D. thesis, University of Mysore, Karnataka, India, 323 p.
    72. Prasanna, M. V., Chidambaram, S., Pethaperumal, S., Srinivasamoorthy, K., John Peter, A., Anandhan, P. M., et al. (2008). Integrated geophysical and chemical study in the lower subbasin of Gadilam River, Tamilnadu, India. / Environmental Geosciences, / 15(4), 145-52. CrossRef
    73. Prasanna, M. V., Chidambaram, S., ShahulHameed, A., & Srinivasamoorthy, K. (2010). Study of evaluation of groundwater in Gadilam basin using hydrogeochemical and isotope data. / Environmental Monitoring and Assessment, / 168, 63-0. CrossRef
    74. Puthiyasekar, C., Neelakandan, M. A., & Poongothai, S. (2010). Heavy metal contamination in bore water due to industrial pollution and polluted and non polluted sea water intrusion in Thoothukudi and Tirunelveli of South Tamil Nadu, India. / Bulletin of Environment Contamination and Toxicology, / 85, 598-01. CrossRef
    75. Raghunath, H. M. (1987). / Geochemical survey and water quality (pp. 343-47). New Delhi: Groundwater Wiley eastern limited.
    76. Rajmohan, N. (2003). Major correlation in ground water of Kancheepuram region, South India. / Indian Journal of Environmental Health, / 45(1), 1-.
    77. Rajmohan, N., Al-Futaisi, A., & Jamrah, A. (2007). Evaluation of long-term groundwater level data in regular monitoring wells, Barka, Sultanate of Oman. / Hydrol Process, 21, 3367-379.
    78. Ramachandran, M., Sabarathinam, C., Ulaganthan, K., Paluchamy, A., Sivaji, M., & Hameed, S. (2010). Mapping of fluoride ions in groundwater of Dindigul district, Tamilnadu, India—using GIS technique. / Arabian Journal of Geosciences, / 5, 433-39. doi:10.1007/s12517-010-0216-0 .
    79. Ramanathan, S. (1956). / Ultrabasic rock of Salem and Dodkanya and their relationship with Charnocite. Published Ph.Dthesis, University of Madras.
    80. Ramanathan, A. L. (1992). / Geochemical studies in the Cauvery river basin. Ph.D thesis, Punjab University, Chandigarh.
    81. Ramesh, R., & Anbu, M. (1996). Chemical methods for environmental analysis. / Water and Sediment, 1, 1-6.
    82. Ramkumar, T., Venkatramanan, S., Anitha Mary, I., Tamilselvi, M., & Ramesh, G. (2010). Hydrogeochemical quality of groundwater in Vedaraniyam Town, Tamilnadu, India. / Research Journal of Environmental and Earth Sciences, / 2(1), 44-8.
    83. Ravichandran, S. (2003). Hydrological influences on the water quality trends in Tamiraparani basin, South India. / Environmental Monitoring and Assessment, / 87, 293-09. CrossRef
    84. Reddy, D. V., Nagabhushanam, P., Sukhija, B. S., Reddy, A. G. S., & Smedley, P. L. (2010). Fluoride dynamics in the granitic aquifer of the Wailapally watershed, Nalgonda District, India. / Chemical Geology, / 269, 278-89. CrossRef
    85. Reijnders, H. F. R., Van Drecht, G., Prins, H. F., & Boumans, L. J. M. (1998). The quality of the groundwater in the Netherlands. / Jornal of Hydrology, 207, 179-88.
    86. Richard, L. A. (1954). / Diagnosis and improvement of saline and alkali soils (p. 160). Agricultural hand book 60. Washington, DC: USDA, 160?pp.
    87. Ripa, L. W. (1993). A half-century of community water fluoridation in the United States: review and commentary. / Journal of Public Health Dentistry, / 53, 17-4. CrossRef
    88. Ryznes, J. W. (1944). A new index for determining amount of calcium carbonate scale formed by water. / Journal American Water Works Association, / 36, 472-86.
    89. Saxena, V. K., & Ahmed, S. (2001a). Dissolution of fluoride in groundwater: A water–rock interaction study. / Environmental Geology, / 40, 1084-087. CrossRef
    90. Saxena, V. K., & Ahmed, S. (2001b). Dissolution of fluoride in groundwater: a water–rock interaction study. / Environmental Geology, / 40, 1084-087. CrossRef
    91. Selvin Pitchaikani, J., Ananthan, G., & Sudhakar, M. (2010). Studies on the effect of coolant water effluent of tuticorin thermal power station on hydro biological characteristics of Tuticorin Coastal Waters, South East Coast of India. / Current Research Journal of Biological Sciences, / 2(2), 118-23.
    92. Shaji, E., Bindu, Viju, J., & Thambi, D. S. (2007). High fluoride in groundwater of Palghat district, Kerala. / Current Science, / 92, 240-45.
    93. Shamsun Nahar, M. S., & Zhang, J. (2012). Assessment of potable water quality including organic, inorganic, and trace metal concentrations. / Environmental Geochemistry and Health, / 34, 141-50. doi:10.1007/s10653-011-9397-z . CrossRef
    94. Shortt, W. E. (1937). Endemic fluorosis in Nellore District, South India. / Indian Medical Gazette, / 72, 396-03.
    95. Shusheela, A. K. (1993). Prevention and control of fluorosis in India. Rajeev Gandhi National Drinking Water Mission. / Ministry of Rural Development, New Delhi Health, / 1, 20-2.
    96. Singaraja, C., Chidambaram, S., Anandhan, P., Prasann, M. V., Thivya, C., & Thilagavathi, R. (2012a). A study on the status of fluoride ion in groundwater of coastal hard rock aquifers of south India. / Arabian Journal of Geosciences, / 6, 4167-177. doi:10.1007/s12517-012-0675-6 .
    97. Singaraja, C., Chidambaram, S., Prasanna, M. V., Paramaguru, P., Johnsonbabu, T. C., & Thilagavathi, R. (2012b). A study on the behavior of the dissolved oxygen in the shallow coastal wells of Cuddalore District, Tamilnadu, India. / Water Quality, Exposure and Health, / 4(1), 1-6. doi:10.1007/s12403-011-0058-3 .
    98. Singaraja, C., Chidambaram, S., Anandhan, P., Prasanna, M. V., Thivya, C., Thilagavathi, R., et al. (2013a). Hydrochemistry of groundwater in a coastal region and its repercussion on quality, a case study—Thoothukudi district, Tamilnadu, India. / Arabian Journal of Geosciences,. doi:10.1007/s12517-012-0794-0 .
    99. Singaraja, C., Chidambaram, S., Prasanna, M. V., Thivya, C., & Thilagavathi, R. (2013b). Statistical analysis of the hydrogeochemical evolution of groundwater in hard rock coastal aquifers of Thoothukudi district in Tamil Nadu, India. / Environ Earth Science,. doi:10.1007/s12665-013-2453-5 .
    100. Singaraja, C., Chidambaram, S., Prasanna, M. V., Thivya, C., & Thilagavathi, R. (2013c). Appraisal of water quality pollution (2013c) Indices for heavy metal contamination monitoring: A case study from Thoothukudi Districts, Tamilnadu, India. / Inventi Rapid: Water & Environment, / 4, 1-.
    101. Singh, V. S., Mondal, N. C., Singh, S., & Negi, B. C. (2006). / Hydrogeological and geophysical investigations to delineate aquifer zone around SIIL, Tuticorin, Tamilnadu, (p. 24). Technical report. no. NGRI-2006-GW- 564.
    102. Smith, S. J., Andres, R., Conception, E., & Lurz, J. (2004). / Sulfur dioxide emissions pp. 1850-000 (JGCRI Report. PNNL-14537).
    103. Solai, A., Suresh Gandhi, M., Chandrasekaran, K., & Ram Mohan, V. (2012). Depositional environment in and around Tamiraparani estuary, and off Tuticorin, Tamil Nadu, India: Clues from grain size studies. / Arabian Journal of Geosciences, / 6(7), 2419-446. doi:10.1007/s12517-012-0520-y .
    104. Sreedevi, P. D. (2004). Groundwater quality of Pageru river basin, Cudapah district, Andhra Pradesh. / Journal of the Geological Society of India, / 64, 619-36.
    105. Srinivasamoorthy, K. (2005). / Hydrogeochemistry of Groundwater in Salem district, Tamilnadu, India. Published PhD thesis, Annamalai University.
    106. Srinivasamoorthy, K., Chidambaram, S., & Vasanthavigar, M. (2008). Geochemistry of fluorides in groundwater: Salem District, Tamilnadu, India. / Journal of Environmental Hydrology, / 16, 25.
    107. Stallard, R. F., & Edmond, J. M. (1983). Geochemistry of the Amazon river. The influence of geology and weathering environment on the dissolved load; / J. / Geophysics, / 88, 9671-688. CrossRef
    108. Stuyfzand, P. J. (1989). / Nonpoint sources of trace elements in potable groundwaters in the Netherlands. In Proceedings 18th TWSA water workings. Testing and Research Institute KlWA.
    109. Subba Rao, N., & Devadas, D. J. (2003). Fluoride incidence in groundwater in a area of Peninsula India. / Environmental Geology, / 45, 243-51. CrossRef
    110. Subba Rao, N., Prakasa Rao, J., Nagamalleswara Rao, B., Nirranjan Babu, P., Madhusudhana Reddy, P., & John Devadas, D. (1998). A preliminary report on fluoride content in groundwaters of Guntur area, Andhra Pradesh, India. / Current Scence, / 75, 887-88.
    111. Subba Rao, N., Prakasa Rao, J., John Devadas, D., Srinivasa Rao, K. V., Krishna, C., & Nagamalleswara Rao, B. (2002). Hydrogeochemistry and groundwater quality in a developing urban environment of a semi-arid region, Guntur, Andhra Pradesh. / Journal of the Geological Society of India, / 59, 159-66.
    112. Subba Rao, N., Surya Rao, P., Venktram Reddy, G., Nagamani, M., Vidyasagar, G., & Satyanarayana, N. L. V. (2012). Chemical characteristics of groundwater and assessment of groundwater quality in Varaha River Basin, Visakhapatnam District, Andhra Pradesh, India. / Environmental Monitoring and Assessment, / 184, 5189-214. doi:10.1007/s10661-011-2333-y . CrossRef
    113. Subramani, T., Elango, L., & Damodarasamy, S. R. (2005). Groundwater quality and its suitability for drinking and agricultural use in Chithar River Basin, Tamilnadu, India. / Environmental Geology, / 47, 1099-110. CrossRef
    114. Suttie, J. W. (1969). Fluoride content of commercial dairy concentrates and alfalfa forage. / Journal of Agricultural and Food Chemistry, / 17, 1350-352. CrossRef
    115. Szaboles, I., & Darab, C. (1964). / The influence of irrigation water of high sodium carbonate content of soils. In Proceedings of 8th international congress of ISSS, Trans, II (pp. 803-12).
    116. Thilagavathi, R., Chidambaram, S., Prasanna, M. V., Thivya, C., & Singaraja, C. (2012). A study on groundwater geochemistry and water quality in layered aquifers system of Pondicherry region, southeast India. / Applied Water Science, / 2, 253-69. doi:10.1007/s13201-012-0045-2 .
    117. Thivya, C., Chidambaram, S., Singaraja, C., Thilagavathi, R., Prasanna, M. V., & Jainab, (2013a). A study on the significance of lithology in groundwater quality of Madurai district, Tamil Nadu (India). / Environment, Development and Sustainability, / 15, 1365-387. doi:10.1007/s10668-013-9439-z .
    118. Thivya, C., Chidambaram, S., Thilagavathi, R., Prasanna, M. V., Singaraja, C., Nepolian, M., et al. (2013b). Identification of the geochemical processes in groundwater by factor analysis in hard rock aquifers of Madurai District, South India. / Arabian Journal of Geosciences,. doi:10.1007/s12517-013-1065-4 .
    119. Tijani, M. N. (1994). Hydrochemical assessment of groundwater in Moro area, Kw ara State, Nigeria. / Environmental Geology, / 24, 194-02. CrossRef
    120. Twarakavi, N. K. C., & Kaluarachchi, J. J. (2006). Sustainability of groundwater quality considering land use changes and public health risks. / Journal of Environmental Management, / 81, 405-19. CrossRef
    121. Umar, R., & Ahmad, M. S. (2000). Groundwater quality in parts of central Gang Basin, India. / Environmental Geology, / 39(6), 673-78.
    122. USPHS. (1987). / Drinking water standards. Washington, DC: United States Public Health Services.
    123. USPHS. (1991). / US Public Health Service, PHS review of fluoride: Benefits and risk: report of ad hoc sub-committee on fluoride. Committee to co-ordinate environments health and related programs.
    124. USEPA (1995). / Drinking water criteria document on fluoride office of drinking water (pp. TR- 832–TR- 51985). Washington: USEPA.
    125. Valenzuela-Vasquez, L., Ramirez-Hernandez, J., Reyes-Lopez, A., & Soluribe, O. (2006). The origin of fluoride in groundwater supply to Hermosillo City, Sonora, Mexico. / Environmental Geology, / 51, 17-7. CrossRef
    126. Veeraputhiran, V., & Alagumuthu, G. (2010). A report on Fluoride distribution in drinking Water. / International journal of environmental sciences, / 1(4), 558-66.
    127. Wen, X., Wu, Y., Su, J., Zhang, Y., & Liu, F. (2005). Hydrochemical characteristics and salinity of groundwater in the Ejina Basin, Northwestern China. / Environmental Geology, 48, 665-75. doi:10.1007/s00254-005-0001-7 .
    128. Wen, X. H., Wu, Y. Q., & Wu, J. (2008). Hydrochemical characteristics of groundwater in the Zhangye basin, northwestern China. / Environmental Geology, / 55, 1713-724. CrossRef
    129. White, D. E., Hem, J. D., & Warming, G. A. (1963). / Chemical composition of subsurface water.US Geological Survey Professor Paper: 440-F.
    130. WHO (World Health Organization). (2004). / Guidelines for drinking water quality recommendations (Vol 1, pp. 515). Geneva: WHO.
    131. Wilcox, L.V. (1955). / Classification and use of irrigation waters (p. 19). U.S. Department of Agriculture, Circulation 969, Washington, DC.
    132. Wodeyar, B. K., & Sreenivasan, G. (1996). Occurrence of fluoride in the groundwaters and its impact in Peddavankahalla Basin, Bellary District, Karnataka, India—A preliminary study. / Current Science, / 70, 71-4.
    133. Woo, N.-C., Moon, J.-W., Won, J.-S., Hahn, J.-S., Lin, X.-Y., & Zhao, Y.-S. (1999). Water quality and pollution in the Hunchun basin. / China, Environmental Geochemistry and Health, / 22, 1-8. CrossRef
    134. World Health Organization. (1997). / Guideline for drinking water quality health criteria and other supporting information (2nd ed., Vol. 2). Geneva: WHO.
    135. Yidana, S. M., Ophori, D., & Banoeng-Yakubo, B. (2010). Hydrogeological and hydrochemical characterization of the Voltaian Basin: The Afram Plains area, Ghana. / Environmental Geology, / 53, 1213-223. CrossRef
    136. Yuce, G. (2007). A geochemical study of the groundwater in the Misli basin and environmental implications. / Environmental Geology, / 51, 857-68. CrossRef
    137. Yun, S. T., Chae, G. T., Koh, Y. K., Kim, S. R., Choi, B. Y., Lee, B. H., et al. (1998). Hydrogeochemical and environmental isotope study of groundwaters in the Pungki area. / Journal of Korean Social Groundwater Environmental, / 5, 177-91.
    138. Yvonne, A. S., BanoengYakubo, E. B., Daniel, E., Asiedu, K., Sandow, E., & Yidana, M. (2008). Water quality analysis of groundwater in crystalline basement rocks, northern Ghana. / Environmental Geology, / 58(5), 989-97. doi:10.1007/s00254-008-1578-4 .
    139. Zhao, J., Guo, F., Lei, K., & Yanwu, L. (2011). Multivariate analysis of surface water quality in the Three Gorges area of China and implications for water management. / Journal of Environmental Sciences, / 23(9), 1460-471. CrossRef
  • 作者单位:C. Singaraja (1)
    S. Chidambaram (1)
    P. Anandhan (1)
    M. V. Prasanna (1) (2)
    C. Thivya (1)
    R. Thilagavathi (1)
    J. Sarathidasan (1)

    1. Department of Earth Sciences, Annamalai University, Annamalai Nagar, Chidambaram, 608002, India
    2. Department of Applied Geology, School of Engineering and Science, Curtin University, Sarawak Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia
  • ISSN:1573-2975
文摘
In modern living, rapid development has created an increase in demand for groundwater. An endeavor has been made to understand the hydrogeochemical parameters to determine the utility of groundwater. This situation is severe in coastal hard rock aquifers due to the influence of salinity ingression and other anthropogenic influence. A total of 135 groundwater samples were collected from the coastal aquifer of the Tuticorin district and analyzed for major cations and anions during premonsoon (PRM) and postmonsoon (POM). The ions analyzed were used to determine the drinking, agricultural and domestic utility of groundwater. The electrical conductivity (EC) contour shows that the groundwater quality is poor along the coast. The parameters were compared with WHO (Guidelines for drinking water quality recommendations, WHO, Geneva, 2004) standard for drinking purpose. A groundwater classification method has been developed for groundwater in the area using a dynamic water quality index (WQI). On the basis of the WQI so computed, groundwater in the area has been spatially classified into “excellent,-“good,-“poor-and “very poor-to “Unsuitable-water types variation lithologywise. Corrosivity ratio and hardness were noted to be higher and found to be unsuitable in majority of the regions for domestic purpose. Higher fluoride concentration was noted in the central part of the study area represented by complex geology comprising of the hornblende biotite gneiss and charnockite. Sodium percentage (Na%), sodium absorption ratio, residual sodium carbonate, Wilcox (Classification and use of irrigation waters, US Department of Agriculture, Washington, 1955), permeability index, residual sodium bicarbonate, magnesium hazard, Kelly’s ratio and potential salinity also indicate that most of the groundwater samples are not suitable for irrigation purposes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700