Effect of ammonia on anaerobic degradation of amino acids
详细信息    查看全文
  • 作者:Seyong Park ; Moonil Kim
  • 关键词:anaerobic digestion ; amino acids ; ammonia ; volatile fatty acids (VFAs) ; β ; alanine
  • 刊名:KSCE Journal of Civil Engineering
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:20
  • 期:1
  • 页码:129-136
  • 全文大小:411 KB
  • 参考文献:American Public Health Association (APHA) (2005). The American WaterWorks Association (AWWA), and the Water Environment Federation (WEF), Solids, Standard Methods for the Examination of Water and Wastewater, 21st Ed., APHA, Washington, DC, 2-55–2-60.
    Appels, L., Baeyens, J., Degreve, J., and Dewil, R. (2008). “Principles and potential of the anaerobic digestion of waste-activated sludge.” Progress in Energy and Combustion Science, Vol. 34, No. 6, pp. 755–781, DOI: 10.​1016/​j.​pecs.​2008.​06.​002 .CrossRef
    Ato, M., Ishii, M., and Igarashi, W. (2014). “Enrichment of amino acidoxidizing, acetate-reducing bacteria.” Journal of Bioscience and Bioengineering, In press, DOI: 10.​1016/​j.​jbiosc2014.​12.​003 .
    Baena, S., Fardeau, M. L., Labat, M., Ollivier, B., Garcia, J. L., and Patel, B. K. (1998). “Desulfovibrioaminophilus sp. nov., a Novel Amino Acid Degrading and Sulfate Reducing Bacterium from an Anaerobic Dairy Wastewater Lagoon.” Systematic and Applied Microbiology, Vol. 21, No. 4, pp. 498–504, DOI: 10.​1016/​S0723-2020(98)80061-1 .CrossRef
    Barker, H. A. (1981). “Amino acid degradation by anaerobic bacteria.” Annual Review of Biochemistry, Vol. 50, No. 7, pp. 23–40, DOI: 10.​1146/​annurev.​bi.​50.​070181.​000323 .CrossRef
    Calli, B., Mertoglu, B., Inanc, B., and Yenigun, O. (2005). “Effects of high free ammonia concentration on the performances of anaerobic bioreactors.” Process Biochemistry, Vol. 40, Nos. 3–4, pp. 1285–1292, DOI: 10.​1016/​j.​procbio.​2004.​05.​008 .CrossRef
    Chen, Y., Cheng, J. J., and Creamer, K. S. (2008). “Inhibition of anaerobic digestion process: A review.” Bioresourece Technology, Vol. 100, No. 10, pp. 4044–4064, DOI: 10.​1016/​j.​biortech.​2007.​01.​057 .CrossRef
    Chi, Y., Li, Y., Fei, X., Wang, S., and Yuan, H. (2011). “Enhancement of thermophilic anaerobic digestion of thickened waste activated sludge by combined microwave and alkaline pretreatment.” Journal of Environmental Science, Vol. 23, No. 8, pp. 1256–1265, DOI: 10.​1016/​S1001-0742(10)60561-X .
    Duan, N., Dong, B., Wu, B., and Dai, X. (2012). “High-solid anaerobic digestion of sewage sludge under mesophilic conditions: Feasibility study.” Bioresource Technology, Vol. 104. No. 1, pp. 150–156, DOI: 10.​1016/​j.​biortech.​2011.​10.​090 .CrossRef
    Kim, M., Ahn, Y., and Speece, R. E. (2002). “Comparative process stability and efficiency of anaerobic digestion; Mesophilic vs. thermophilic.” Water Research, Vol. 36, No. 17, pp. 4369–4385, DOI: 10.​1016/​S0043-1354(02)00147-1 .CrossRef
    Koster, I. W. and Lettinga, G. (1998). “Anaerobic digestion at extreme ammonia concentrations.” Biological Wastes, Vol. 25, No. 1, pp. 51–59, DOI: 10.​1016/​0269-7483(88)90127-9 .CrossRef
    Liang, L. Y., Zheng, Y. G., and Shen, Y. C. (2008). “Optimization of beta Alanine production from beta-aminopropionitrile be resting cells of rhodococcus sp. G20 in a bubble column reactor using response surface methodology.” Process Biochemistry, Vol. 43, No. 7, pp. 758–764, DOI: 10.​1016/​j.​procbio.​2008.​03.​002 .CrossRef
    Liu, H., Wang, J., Liu, X., Fe, B., Chen, J., and Yu, H. Q. (2012). “Acidogenic fermentation of proteinaceous sewage sludge: Effect of pH.” Water Research, Vol. 46, No. 3, pp. 799–807, DOI: 10.​1016/​j.​watres.​2011.​11.​047 .CrossRef
    Mcmurry, J. (2011). Organic chemistry (8 th international edition), Cengage Learning, UK.
    Mottet, A., Steyer, J. P., Seleris, S., Vedrenne, F., Chauzy, J., and Carrere, H. (2009). “Kinetics of thermophilic batch anaerobic digestion of thermal hydrolysed waste activated sludge.” Biochemical Engineering Journal, Vol. 46, No. 2, pp. 169–175, DOI: 10.​1016/​j.​bej.​2008.​05.​003 .CrossRef
    Nasr, N., Elbeshbishy, E., Hafes, H., Nakhla, G., and Naggar, M. H. E. (2012). “Comparative assessment of single-stage and two-stage anaerobic digestion for the treatment of thin stillage.” Bioresource Technology, Vol. 111, No. 5, pp. 122–126, DOI: 10.​1016/​j.​biortech.​2012.​02.​019 .CrossRef
    Orlygsson, J., Houwen, F. P., and Svensson, B. H. (1994). “Influence of hydrogenothrophic methane formation on the thermophilic anaerobic degradation of protein and amino acids.” Microbiology Ecology, Vol. 13, No. 4, pp. 327–331, DOI: 10.​1111/​j.​1574-6941.​1994.​tb00079.​x .CrossRef
    Park, J., Park, S., and Kim, M. (2014). “Anaerobic degradation of amino acids generated from the hydrolysis of sewage sludge.” Environmental Technology, Vol. 35, No. 9, pp. 1133–1139, DOI: 10.​1080/​09593330.​2013.​863951 .CrossRef
    Park, S., Park, J., Na, H., and Kim, M. (2012). “Estimation of influencing factors for efficient anaerobic digestion of thermally-hydrolyzed sewage sludge.” Challenges in Environmental Science & Engineering (CESE), The 5th CESE Conference, Australia Melbourne.
    Ramsay, I. R. and Pullammanappallil, P. C. (2001). “Protein degradation during anaerobic wastewater treatment: derivation of stoichiometry.” Biodegradation, Vol. 12, No. 4, pp. 247–257, DOI: 10.​1023/​A:​1013116728817 .CrossRef
    Speece, R. E. (2008). Anaerobic biotechnology and odor/corrosion control, Archae Press, Nashville, TN.
    Su, H., He, P., Yu, G. I., and Shao, L. (2011). “Effect of ultrasonic pretreatment on anaerobic digestion and its sludge dewaterability.” Journal of Environmental Science, Vol. 23, No. 9, pp. 1472–1478, DOI: 10.​1016/​S1001-0742(10)60618-3 .CrossRef
    Tampio, E., Ervasti, S., Paavola, T., Heaven, S., Banks, C., and Rintala, J. (2014). “Anaerobic digestion of autoclaved and untreated food waste.” Waste Management, Vol. 34, No. 2, pp. 370–377, DOI: 10.​1016/​j.​wasman.​2013.​10.​024 .CrossRef
    Wagner, A. O., Hohlbrugger, P., Lins, P., and Illmer, P. (2011). “Effects of different nitrogen sources on the biogas production — a lab-scale investigation.” Microbiol Res., Vol. 167, No. 10, pp. 630–636, DOI: 10.​1016/​j.​micres.​2011.​11.​007 .CrossRef
    Wittmann, C., Zeng, A., and Deckwer, W. (1995). “Growth inhibition by ammonia and use of a pH-controlled feeding strategy for the effective cultivation of Mycobacterium chlorophenollcum.” Applied Microbiology and Biotechnology, Vol. 44, No. 3, pp. 519–525, DOI: 10.​1007/​BF00169954 .CrossRef
  • 作者单位:Seyong Park (1)
    Moonil Kim (1)

    1. Dept. of Civil and Environmental Engineering, Hanyang University, Ansan, 426-791, Korea
  • 刊物类别:Engineering
  • 刊物主题:Civil Engineering
    Industrial Pollution Prevention
    Automotive and Aerospace Engineering and Traffic
    Geotechnical Engineering
  • 出版者:Korean Society of Civil Engineers
  • ISSN:1976-3808
文摘
Since amino acids are the main intermediates converted from protein and they produce ammonia which affects on the efficiency of anaerobic digestion, the effect of ammonia on anaerobic degradation of the amino acids should be evaluated. As the initial NH4 +-N concentrations increased from 0 to 5,000 mg NH4 +-N/L, deamination of the amino acids decreased from 100 to 55% implying that deamination was inhibited by the ammonia toxicity. Although the initial NH4 +-N was absent, the produced ammonia from the amino acids inhibited methane production. VFAs produced through deamination accumulated and were not converted to methane due to the ammonia toxicity. Among all of the amino acids, only β-alanine was very sensitive to ammonia inhibition. Conclusively, concentration of ammonia both in wastewater and to be produced from amino acids should be investigated for better anaerobic digestion of wastewater having a high content of protein such as hydrolysed wastewater sludge.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700