Removal of recalcitrant organic matter content in wastewater by means of AOPs aiming industrial water reuse
详细信息    查看全文
  • 作者:Bianca M. Souza ; Bruno S. Souza…
  • 关键词:AOPs ; Reverse osmosis ; Oil refinery wastewater ; Water reuse
  • 刊名:Environmental Science and Pollution Research
  • 出版年:2016
  • 出版时间:November 2016
  • 年:2016
  • 卷:23
  • 期:22
  • 页码:22947-22956
  • 全文大小:700 KB
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment
    Environment
    Atmospheric Protection, Air Quality Control and Air Pollution
    Waste Water Technology, Water Pollution Control, Water Management and Aquatic Pollution
    Industrial Pollution Prevention
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1614-7499
  • 卷排序:23
文摘
This paper comes out from the need to provide an improvement in the current oil refinery wastewater treatment plant (WWTP) aiming to generate water for reuse. The wastewater was pretreated and collected in the WWTP after the biological treatment unit (bio-disks) followed by sand filtration. Ozonation (ozone concentration from 3.0–60 mgO3 L−1), UV (power lamp from 15 to 95 W), H2O2 (carbon:H2O2 molar ratio of 1:1, 1:2, and 1:4), and two advanced oxidation processes (UV/O3 and UV/H2O2) were investigated aiming to reduce the wastewater organic matter and generate water with suitable characteristics for the reverse osmosis operation and subsequent industrial reuse. Even after the biological and filtration treatments, the oil refinery wastewater still presented an appreciable amount of recalcitrant organic matter (TOC of 12–19 mgC L−1) and silt density index (SDI) higher than 4, which is considered high for subsequent reverse osmosis due to membrane fouling risks. Experiments using non combined processes (O3, H2O2, and UV only) showed a low degree of mineralization after 60 min of reaction, although the pretreatment with ozone had promoted the oxidation of aromatic compounds originally found in the real matrix, which suggests the formation of recalcitrant compounds. When the combined processes were applied, a considerable increase in the TOC removal was observed (max of 95 % for UV/O3 process, 55 W, 60 mgO3 L−1), likely due the presence of higher amounts of reactive species, specially hydroxyl radicals, confirming the important role of these species on the photochemical degradation of the wastewater compounds. A zero-order kinetic model was fitted to the experimental data and the rate constant values (k, mgC L−1 h−1) ranged from 4.8 < kUV/O3 < 11 ([O3]0 = 30–60 mg L−1), and 8.6 < kUV/H2O2 < 11 (C:H2O2 from 1:1 to 1:4). The minimum and maximum electrical energy per order (EEO) required for 60 min of treatment were calculated as 5.4 and 81 Wh L−1, respectively, for UV/O3 (15 W, 60 mgO3 L−1) and UV/H2O2 (95 W, 1C:1H2O2). Good results in terms of water conditioning for reverse osmosis operation were obtained using UV/H2O2 process with initial molar ratio of 1 C:2 H2O2 (UV lamp 55 W) and 1 C:4 H2O2 (UV lamp 95 W), and total organic carbon (TOC) removals of 62 % (SDI15 = 1.8) and 74 % (SDI15 = 2.0) were achieved, respectively, after 60 min. The treated wastewater followed to the reverse osmosis system, which operated with an adequate flux of permeate, was very efficient to remove salt and generate a permeate water with the required quality for industrial reuse.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700