Potential for beneficial application of sulfate reducing bacteria in sulfate containing domestic wastewater treatment
详细信息    查看全文
  • 作者:T. P. H. van den Brand ; K. Roest ; G. H. Chen…
  • 关键词:Sulphate reducing bacteria ; Heavy metal removal ; Decreased sludge treatment ; Low growth yield ; Pathogen removal ; Domestic wastewater
  • 刊名:World Journal of Microbiology & Biotechnology
  • 出版年:2015
  • 出版时间:November 2015
  • 年:2015
  • 卷:31
  • 期:11
  • 页码:1675-1681
  • 全文大小:442 KB
  • 参考文献:Abdeen S, Di W, Hui L, Chen G-H, van Loosdrecht MCM (2010) Fecal coliform removal in a sulfate reducing autotrophic denitrification and nitrification integrated (SANI) process for saline sewage treatment. Water Sci Technol 62(11):2564CrossRef
    Bhattacharya SK, Uberoi V, Dronamraju MM (1996) Interaction between acetate fed sulfate reducers and methanogens. Water Res 30(10):2239鈥?246CrossRef
    Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Bioresour Technol 99:4044鈥?064CrossRef
    Chen G-H, Brdjanovic D, Ekama GA, van Loosdrecht MCM (2010) Seawater as alternative water resource. In: Proceedings of the 7th IWA leading edge technology conference on water and wastewater treatment, Arizona, USA, 2鈥? June 2010
    Chen G-H, Chui HK, Wong CL, Tang DTW, Lu H, Jiang F, van Loosdrecht MCM (2012) An innovative triple water supply system and a novel SANI process to alleviate water shortage and pollution problem for water-scarce coasstal areas in China. J Water Sustain 2(2):121鈥?29
    Colleran E, Finnegan S, Lens P (1995) Anaerobic treatment of sulphate-containing waste streams. Antonie van Leeuwenhoek 67(1):29鈥?6CrossRef
    Dolla A, Fournier M, Dermoun Z (2006) Oxygen defense in sulfate-reducing bacteria. J Biotechnol 126(1):87鈥?00CrossRef
    Ekama GA, Wilsenach JA, Chen G-H (2010) Some opportunities and challenges for urban wastewater treatment. In: 7th IWA LET conference Arizone USA, June 2鈥? 2010
    Gutierrez O, Park D, Sharma KR, Yuan Z (2009) Effects of long-term pH elevation on the sulfate-reducing and methanogenic activities of anaerobic sewer biofilms. Water Res 43(9):2549鈥?557CrossRef
    Harada H, Uemura S, Momonoi K (1994) Interaction between sulfate-reducing bacteria and methane-producing bacteria in UASB reactors fed with low strength wastes containing different levels of sulfate. Water Res 28(2):355鈥?67CrossRef
    Hatchikian EC, Henry YA (1977) An iron-containing superoxide dismutase from the strict anaerobe Desulfovibrio desulfuricans (Norway 4). Biochimie 59(2):153鈥?61CrossRef
    Henze M, Van Loosdrecht MCM, Ekama GA, Brdjanovic D (2008) Biological wastewater treatment: principles, modelling and design. IWA Publishing, ISBN: 1843391880
    Hulshoff Pol LW, Lens PNL, Stams AJM, Lettinga G (2004) Anaerobic treatment of sulphate-rich wastewaters. Biodegradation 9(3鈥?):213鈥?24
    Ingvorsen K, Nielsen MY, Joulian C (2003) Kinetics of bacterial sulfate reduction in an activated sludge plant. FEMS Microbiol Ecol 46(2):129鈥?37CrossRef
    Jin P, Bhattacharya SK, Williams CJ, Zhang H (1998) Effects of sulfide addition on copper inhibtion in methanogenic systems. Water Res 32(4):977鈥?88CrossRef
    Jong T, Parry DL (2003) Removal of sulfate and heavy metals by sulfate reducing bacteria in short-term bench scale upflow anaerobic packed bed reactor runs. Water Res 37(14):3379鈥?389CrossRef
    Kaksonen AH, Riekkola-Vanhanen ML, Puhakka JA (2003) Optimization of metal sulphide precipitation in fluidized-bed treatment of acidic wastewater. Water Res 37(2):255鈥?66CrossRef
    Kov谩rov谩-Kovar K, Egli T (1998) Growth kinetics of suspended microbial cells: from single-substrate-controlled growth to mixed-substrate kinetics. Microbiol Mol Biol Rev 62(3):646鈥?668
    Krekeler D, Sigalevich P, Teske A, Cypionka H, Cohen Y (1997) A sulfate-reducing bacterium from the oxic layer of a microbial mat from Solar Lake (Sinai) Desulfovibrio oxyclinae sp. nov. Arch Microbiol 167(6):369鈥?75CrossRef
    Lau GN, Sharma KR, Chen G-H, van Loosdrecht MCM (2006) Integration of sulphate reduction, autotrophic denitrification and nitrification to achieve low-cost excess sludge minimisation for Hong Kong sewage. Water Sci Technol 53(3):227鈥?35CrossRef
    Lee DJ, Cee CY, Chang JS (2012) Treatment and electricity harvesting from sulfate/sulfide-containg wastewater using microbial fuel cell with enriched sulfate-reducing mixed culture. J Hazard Mater 243:67鈥?2CrossRef
    Lee DJ, Liu X, Weng HL (2014) Sulfate and organic carbon removal by microbial fuel cell with sulfate-reducing bacteria and sulfide-oxidising bacteria anodic biofilm. Bioresour Technol 156:14鈥?9CrossRef
    Lens PNL, Kuenen JG (2001) The biological sulfur cycle: novel opportunities for environmental biotechnology. Water Sci Technol 44(8):57鈥?6
    Lens PN, De Poorter MP, Cronenberg CC, Verstraete WH (1995) Sulfate reducing and methane producing bacteria in aerobic wastewater treatment systems. Water Res 29(3):871鈥?80CrossRef
    Lens PNL, Visser A, Janssen AJH, Hulshoff Pol LW, Lettinga G (1998) Biotechnological treatment of sulfate-rich wastewaters. Crit Rev Environ Sci Technol 28(1):41鈥?8CrossRef
    Lens P, Meulepas R, Sampaio R, Vallero M, Esposito G (2007) Bioprocess engineering of sulfate reduction for environmental technology. In: Dahl C, Friedrich CG (ed) Microbial Sulfur Metabolism, chapter 22. Springer, Heidelberg, pp 285鈥?95
    Li A, Guowei G (1993) The treatment of saline wastewater using a two-stage contact oxidation method. Water Sci Technol 28(7):31鈥?7
    Liu Y, Tay J-H (2001) Strategy for minimization of excess sludge production from the activated sludge process. Biotechnol Adv 19(2):97鈥?07CrossRef
    Lopes SIC, Sulistyawati I, Capela MI, Lens PNL (2007) Low pH (6, 5 and 4) sulfate reduction during the acidification of sucrose under thermophilic (55 & #xB0;C) conditions. Process Biochem 42(4):580鈥?91CrossRef
    L贸pez-V谩zquez CM, Hooijmans CM, Brdjanovic D, Gijzen HJ, van Loosdrecht MCM (2008) Factors affecting the microbial populations at full-scale enhanced biological phosphorus removal (EBPR) wastewater treatment plants in The Netherlands. Water Res 42(10鈥?1):2349鈥?360CrossRef
    Lu H, Wang J, Li S, Chen G-H, van Loosdrecht MCM, Ekama GA (2009) Steady-state model-based evaluation of sulfate reduction, autotrophic denitrification and nitrification integrated (SANI) process. Water Res 43(14):3613鈥?621CrossRef
    Lu H, Wu D, Tang DTW, Chen G-H, van Loosdrecht MCM, Ekama GA (2011) Pilot scale evaluation of SANI process for sludge minimization and greenhouse gas reduction in saline sewage treatment. Water Res 63(10):2149鈥?154
    Lu H, Ekama GA, Wu D, Feng J, van Loosdrecht MCM, Chen G-H (2012) SANI庐 process realizes sustainable saline sewage treatment: steady state model-based evaluation of the pilot-scale trial of the process. Water Res 46(2):475鈥?90CrossRef
    Manz W, Eisenbrecher M, Neu TR, Szewzyk U (1998) Abundance and spatial organization of Gram-negative sulfate-reducing bacteria in activated sludge investigated by in situ probing with specific 16S rRNA targeted oligonucleotides. FEMS Microbiol Ecol 25(1):43鈥?1CrossRef
    Mino T, van Loosdrecht MCM, Heijnen JJ (1998) Microbiology and biochemistry of the enhanced biological phosphate removal process. Water Res 32(11):3193鈥?207CrossRef
    Mizuno O, Li YY, Noike T (1994) Effects of sulfate concentration and sludge retention time on the interaction between methane production and sulfate reduction for butyrate. Water Sci Technol 30(8):45鈥?4
    Mokone TP, van Hille RP, Lewis AE (2012) Metal sulphides from wastewater: assessing the impact of supersaturation control strategies. Water Res 46(7):2088鈥?100CrossRef
    Moriyama K, Mori T, Arayashiki H, Saito H, Chino M (1989) The amount of heavy metals derived from domestic wastewater. Water Sci Technol 21:1913鈥?916
    Moussa MS, Fuentes OG, Lubberding HJ, Hooijmans CM, van Loosdrecht MCM, Gijzen HJ (2006) Nitrification activities in full-scale treatment plants with varying salt loads. Environ Technol 27(6):635鈥?43CrossRef
    Muyzer G, Stams AJM (2008) The ecology and biotechnology of sulphate-reducing bacteria. Nature 6:441鈥?55
    Nielsen JL, Nielsen PH (2002) Quantification of functional groups in activated sludge by microautoradiography. Water Sci Technol 46(1鈥?):389鈥?95
    Nilsen RK, Torsvik T, Lien T (1996) Desulfotomaculum thermocisternum sp. nov., a sulfate reducer isolated from a hot North Sea oil reservoir. Int J Syst Bacteriol 46(2):397鈥?02CrossRef
    Omil F, Bakker CD, Pol LWH, Lettinga G (1997) Effect of pH and low temperature shocks on the competition between sulphate reducing bacteria and methane producing bacteria in UASB reactors. Environ Technol 18(3):255鈥?64CrossRef
    Omil F, Lens P, Visser A, Hulshoff Pol LW, Lettinga G (1998) Long-term competition between sulfate reducing and methanogenic bacteria in UASB reactors treating volatile fatty acids. Biotechnol Bioeng 57(6):676鈥?85CrossRef
    Oude Elferink SJWH, Visser A, Hulshoff Pol LW, Stams AJM (1994) Sulfate reduction in methanogenic bioreactors. FEMS Microbiol Rev 15(2鈥?):119鈥?36
    Panswad T, Anan C (1999) Impact of high chloride wastewater on an anaerobic/anoxic/aerobic process with and without inoculation of chloride acclimated seeds. Water Res 33(5):1165鈥?172CrossRef
    Peters RW, Ku Y, Bhattacharyya D (1985) Evaluation of recent treatment techniques for removal of heavy metals from industrial wastewaters. AIChE Symp Ser 81:165鈥?03
    Pr眉ss A, Kay D, Fewtrell L, Bartram J (2002) Estimating the burden of disease from water, sanitation, and hygiene at a global level. Environ Health Perspect 110:537鈥?43CrossRef
    Purdy KJ, Nedwell DB, Embley TM (2003) Analysis of the sulfate-reducing bacterial and methanogenic archaeal populations in contrasting Antarctic sediments. Appl Environ Microbiol 69(6):3181鈥?191CrossRef
    Rabaey K, Van de Sompel K, Maignien L, Boon N, Aelterman P, Clauwaert P, De Schamphelaire L, Pham HT, Vermeulen J, Verhaege M, Lens P, Verstraete W (2006) Microbial fuel cells for sulfide removal鈥? Environ Sci Technol 40(17):5218鈥?224CrossRef
    Rabus R, Br眉chert V, Amann J, K枚nneke M (2002) Physiological response to temperature changes of the marine, sulfate-reducing bacteria Desulfobacterium autotrophicum. FEMS Microbiol Ecol 42(3):409鈥?17CrossRef
    Sahinkaya E, 脰zkaya B, Kaksonen AH, Puhakka JA (2007) Sulfidogenic fluidized-bed treatment of metal-containing wastewater at 8 and temperatures is limited by acetate oxidation. Water Res 41(12):2706鈥?714CrossRef
    Shannon MA, Lee D-Y, Trevors JT, Beaudette LA (2007) Application of real-time quantitative PCR for the detection of selected bacterial pathogens during municipal wastewater treatment. Sci Total Environ 382:121鈥?29CrossRef
    Sharma M, Aryal N, Sarma PM, Vanbroekhoven K, Lal B, Benetton XD, Pant D (2013) Bioelectrocatalyzed reduction of acetic and butyric acids via direct electron transfering using a mixed culture of sulfate-reducers drives electrosynthesis of alcohols and acetone. Chem Commun 49:6495鈥?497CrossRef
    Tsang WL, Wang J, Lu H, Li S, Chen G-H, van Loosdrecht MCM (2009) A novel sludge minimized biological nitrogen removal process for saline sewage treatment. Water Sci Technol 59(10):1893鈥?899CrossRef
    Uberoi V, Bhattacharya SK (1995) Interactions among sulfate reducers, acetogens, and methanogens in anaerobic propionate systems. Water Environ Res 67(3):330鈥?39CrossRef
    Uygur A, Kargi F (2004) Salt inhibition on biological nutrient removal from saline wastewater in a sequencing batch reactor. Enzyme Microb Technol 34(3鈥?):313鈥?18CrossRef
    Vallero MVG, Hulshoff Pol LW, Lettinga G, Lens PNL (2003) Effect of NaCl on thermophilic (55聽掳C) methanol degradation in sulfate reducing granular sludge reactors. Water Res 37(10):2269鈥?280CrossRef
    van den Brand TPH (2014) Sulfate reducing bacteria in wastewater treatment. ISBN:978-94-6108-767-6
    van den Brand TPH, Roest K, Brdjanovic D, Chen GH, van Loosdrecht MCM (2014a) Influence of acetate and propionate on sulphate-reducing bacteria activity. J Appl Microbiol 117(6):1839鈥?847CrossRef
    van den Brand TPH, Roest K, Chen GH, Brdjanovic D, van Loosdrecht MCM (2014b) Temperature effect on acetate and propionate consumption by sulphate reducing bacteria in saline wastewater. Appl Microbiol Biotechnol 98(9):4245鈥?255CrossRef
    van den Brand TPH, Roest K, Chen GH, Brdjanovic D, van Loosdrecht MCM (2015a) Effects of chemical oxygen demand, nutrients and salinity on sulfate-reducing bacteria. Environ Eng Sci. doi:10.鈥?089/鈥媏es.鈥?014.鈥?307
    van den Brand TPH, Roest K, Chen GH, Brdjanovic D, van Loosdrecht MCM (2015b) Long-term effect of seawater on sulphate reduction in wastewater treatment. Environ Eng Sci 32(7):622鈥?30CrossRef
    van den Brand TPH, Roest K, Chen GH, Brdjanovic D, van Loosdrecht MCM (2015c) Occurence and activity of sulphate reducing bacteria in aerobic activated sludge systems. World J Microbiol Biotechnol 31(3):507鈥?16CrossRef
    Visser A, Gao Y, Lettinga G (1993a) Effects of pH on methanogenesis and sulphate reduction in thermophilic (55聽掳C) UASB reactors. Bioresour Technol 44(2):113鈥?21CrossRef
    Visser A, Gao Y, Lettinga G (1993b) Effects of short-term temperature increases on the mesophilic anaerobic breakdown of sulfate containing synthetic wastewater. Water Res 27(4):541鈥?50CrossRef
    Wang J, Lu H, Chen G-H, Lau GN, Tsang WL, van Loosdrecht MCM (2009) A novel sulfate reduction, autotrophic denitrification, nitrification integrated (SANI) process for saline wastewater treatment. Water Res 43(9):2363鈥?372CrossRef
    Wang J, Shi M, Lu H, Wu D, Shao M-F, Zhang T, Ekama G, van Loosdrecht M, Chen G-H (2011) Microbial community of sulfate-reducing up-flow sludge bed in the SANI庐 process for saline sewage treatment. Appl Microbiol Biotechnol 90(6):2015鈥?025CrossRef
    Whang JS, Young D, Pressman M (1982) Soluble-Sulfide precipitation for heavy metals removal from wastewaters. Engineering details of a treatment plant scheduled to be operational in September, 1981. Environ Prog 1(2):110鈥?13CrossRef
    Widdel F, Pfennig N (1982) Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids II. Incomplete oxidation of propionate by Desulfobulbus propionicus gen. nov., sp. nov. Arch Microbiol 131(4):360鈥?65CrossRef
  • 作者单位:T. P. H. van den Brand (1)
    K. Roest (2)
    G. H. Chen (3)
    D. Brdjanovic (4) (5)
    M. C. M. van Loosdrecht (5) (6)

    1. KWR Watercycle Research Institute, Groningenhaven 7, 3433 PE, Nieuwegein, The Netherlands
    2. KWR, Nieuwegein, The Netherlands
    3. Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
    4. UNESCO-IHE, Delft, The Netherlands
    5. TU Delft, Delft, The Netherlands
    6. KWR Watercycle Research Institute, Delft, The Netherlands
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Applied Microbiology
    Biotechnology
    Biochemistry
    Environmental Biotechnology
    Microbiology
  • 出版者:Springer Netherlands
  • ISSN:1573-0972
文摘
The activity of sulfate reducing bacteria (SRB) in domestic wastewater treatment plants (WWTP) is often considered as a problem due to H2S formation and potential related odour and corrosion of materials. However, when controlled well, these bacteria can be effectively used in a positive manner for the treatment of wastewater. The main advantages of using SRB in wastewater treatment are: (1) minimal sludge production, (2) reduction of potential pathogens presence, (3) removal of heavy metals and (4) as pre-treatment of anaerobic digestion. These advantages are accessory to efficient and stable COD removal by SRB. Though only a few studies have been conducted on SRB treatment of domestic wastewater, the many studies performed on industrial wastewater provide information on the potential of SRB in domestic wastewater treatment. A key-parameter analyses literature study comprising pH, organic substrates, sulfate, salt, temperature and oxygen revealed that the conditions are well suited for the application of SRB in domestic wastewater treatment. Since the application of SRB in WWTP has environmental benefits its application is worth considering for wastewater treatment, when sulfate is present in the influent. Keywords Sulphate reducing bacteria Heavy metal removal Decreased sludge treatment Low growth yield Pathogen removal Domestic wastewater

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700