Increased Plasma Concentrations of Unbound SN-38, the Active Metabolite of Irinotecan, in Cancer Patients with Severe Renal Failure
详细信息    查看全文
  • 作者:Ken-ichi Fujita ; Yusuke Masuo ; Hidenori Okumura ; Yusuke Watanabe
  • 刊名:Pharmaceutical Research
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:33
  • 期:2
  • 页码:269-282
  • 全文大小:814 KB
  • 参考文献:1.Fujita K, Sugiura T, Okumura H, Umeda S, Nakamichi N, Watanabe Y, et al. Direct inhibition and down-regulation by uremic plasma components of hepatic uptake transporter for SN-38, an active metabolite of irinotecan, in humans. Pharm Res. 2014;31(1):204–15.CrossRef PubMed
    2.Chu XY, Kato Y, Sugiyama Y. Multiplicity of biliary excretion mechanisms for irinotecan, CPT-11, and its metabolites in rats. Cancer Res. 1997;57(10):1934–8.PubMed
    3.Chu XY, Kato Y, Ueda K, Suzuki H, Niinuma K, Tyson CA, et al. Biliary excretion mechanism of CPT-11 and its metabolites in humans: involvement of primary active transporters. Cancer Res. 1998;58(22):5137–43.PubMed
    4.Nakatomi K, Yoshikawa M, Oka M, Ikegami Y, Hayasaka S, Sano K, et al. Transport of 7-ethyl-10-hydroxycamptothecin (SN-38) by breast cancer resistance protein ABCG2 in human lung cancer cells. Biochem Biophys Res Commun. 2001;288(4):827–32.CrossRef PubMed
    5.Fujita K, Sunakawa Y, Miwa K, Akiyama Y, Sugiyama M, Kawara K, et al. Delayed elimination of SN-38 in cancer patients with severe renal failure. Drug Metab Dispos. 2011;39(2):161–4.CrossRef PubMed
    6.Vanholder R, De Smet R, Glorieux G, Argiles A, Baurmeister U, Brunet P, et al. European Uremic Toxin Work G. Review on uremic toxins: classification, concentration, and interindividual variability. Kidney Int. 2003;63(5):1934–43.CrossRef PubMed
    7.De Smet R, Dhondt A, Eloot S, Galli F, Waterloos MA, Vanholder R. Effect of the super-flux cellulose triacetate dialyser membrane on the removal of non-protein-bound and protein-bound uraemic solutes. Nephrol Dial Transplant. 2007;22(7):2006–12.CrossRef PubMed
    8.Niwa T. Removal of protein-bound uraemic toxins by haemodialysis. Blood Purification. 2013;35 Suppl 2:20–5.CrossRef PubMed
    9.Mathijssen RH, van Alphen RJ, Verweij J, Loos WJ, Nooter K, Stoter G, et al. Clinical pharmacokinetics and metabolism of irinotecan (CPT-11). Clin Cancer Res. 2001;7(8):2182–94.PubMed
    10.Combes O, Barre J, Duche JC, Vernillet L, Archimbaud Y, Marietta MP, et al. In vitro binding and partitioning of irinotecan (CPT-11) and its metabolite, SN-38, in human blood. Invest New Drugs. 2000;18(1):1–5.
    11.de Jong FA, Kitzen JJ, de Bruijn P, Verweij J, Loos WJ. Hepatic transport, metabolism and biliary excretion of irinotecan in a cancer patient with an external bile drain. Cancer Biol Ther. 2006;5(9):1105–10.CrossRef PubMed
    12.Slatter JG, Schaaf LJ, Sams JP, Feenstra KL, Johnson MG, Bombardt PA, et al. Pharmacokinetics, metabolism, and excretion of irinotecan (CPT-11) following I.V. infusion of [(14)C]CPT-11 in cancer patients. Drug Metab Dispos. 2000;28(4):423–33.PubMed
    13.Sparreboom A, de Jonge MJ, de Bruijn P, Brouwer E, Nooter K, Loos WJ, et al. Irinotecan (CPT-11) metabolism and disposition in cancer patients. Clin Cancer Res. 1998;4(11):2747–54.PubMed
    14.Guemei AA, Cottrell J, Band R, Hehman H, Prudhomme M, Pavlov MV, et al. Human plasma carboxylesterase and butyrylcholinesterase enzyme activity: correlations with SN-38 pharmacokinetics during a prolonged infusion of irinotecan. Cancer Chemother Pharmacol. 2001;47(4):283–90.CrossRef PubMed
    15.Davies B, Morris T. Physiological parameters in laboratory animals and humans. Pharm Res. 1993;10(7):1093–5.CrossRef PubMed
    16.Nishi K, Kobayashi M, Nishii R, Shikano N, Takamura N, Kuga N, et al. Pharmacokinetic alteration of (99m)Tc-MAG3 using serum protein binding displacement method. Nucl Med Biol. 2013;40(3):366–70.CrossRef PubMed
    17.Takamura N, Haruta A, Kodama H, Tsuruoka M, Yamasaki K, Suenaga A, et al. Mode of interaction of loop diuretics with human serum albumin and characterization of binding site. Pharm Res. 1996;13(7):1015–9.CrossRef PubMed
    18.Sakai T, Takadate A, Otagiri M. Characterization of binding site of uremic toxins on human serum albumin. Biol Pharm Bull. 1995;18(12):1755–61.CrossRef PubMed
    19.Mathijssen RH, Verweij J, Loos WJ, de Bruijn P, Nooter K, Sparreboom A. Irinotecan pharmacokinetics-pharmacodynamics: the clinical relevance of prolonged exposure to SN-38. Br J Cancer. 2002;87(2):144–50.PubMedCentral CrossRef PubMed
    20.Benet LZ, Hoener BA. Changes in plasma protein binding have little clinical relevance. Clin Pharmacol Ther. 2002;71(3):115–21.CrossRef PubMed
    21.Niemi M, Backman JT, Kajosaari LI, Leathart JB, Neuvonen M, Daly AK, et al. Polymorphic organic anion transporting polypeptide 1B1 is a major determinant of repaglinide pharmacokinetics. Clin Pharmacol Ther. 2005;77(6):468–78.CrossRef PubMed
    22.Kalliokoski A, Neuvonen M, Neuvonen PJ, Niemi M. The effect of SLCO1B1 polymorphism on repaglinide pharmacokinetics persists over a wide dose range. Br J Clin Pharmacol. 2008;66(6):818–25.PubMedCentral CrossRef PubMed
    23.Marbury TC, Ruckle JL, Hatorp V, Andersen MP, Nielsen KK, Huang WC, et al. Pharmacokinetics of repaglinide in subjects with renal impairment. Clin Pharmacol Ther. 2000;67(1):7–15.CrossRef PubMed
    24.Zhao P, Vieira Mde L, Grillo JA, Song P, Wu TC, Zheng JH, et al. Evaluation of exposure change of nonrenally eliminated drugs in patients with chronic kidney disease using physiologically based pharmacokinetic modeling and simulation. J Clin Pharmacol. 2012;52(1 Suppl):91S–108S.CrossRef PubMed
    25.Plum A, Muller LK, Jansen JA. The effects of selected drugs on the in vitro protein binding of repaglinide in human plasma. Methods Find Exp Clin Pharmacol. 2000;22(3):139–43.
    26.Zimmerman EI, Hu S, Roberts JL, Gibson AA, Orwick SJ, Li L, et al. Contribution of OATP1B1 and OATP1B3 to the disposition of sorafenib and sorafenib-glucuronide. Clin Cancer Res. 2013;19(6):1458–66.PubMedCentral CrossRef PubMed
    27.Meert N, Schepers E, De Smet R, Argiles A, Cohen G, Deppisch R, et al. Inconsistency of reported uremic toxin concentrations. Artif Organs. 2007;31(8):600–11.CrossRef PubMed
    28.Watanabe H, Noguchi T, Miyamoto Y, Kadowaki D, Kotani S, Nakajima M, et al. Interaction between two sulfate-conjugated uremic toxins, p-cresyl sulfate and indoxyl sulfate, during binding with human serum albumin. Drug Metab Dispos: Biol Fate Chem. 2012;40(7):1423–8.CrossRef
    29.Sakai T, Yamasaki K, Sako T, Kragh-Hansen U, Suenaga A, Otagiri M. Interaction mechanism between indoxyl sulfate, a typical uremic toxin bound to site II, and ligands bound to site I of human serum albumin. Pharm Res. 2001;18(4):520–4.CrossRef PubMed
    30.Pavone B, Sirolli V, Giardinelli A, Bucci S, Forli F, Di Cesare M, et al. Plasma protein carbonylation in chronic uremia. J Nephrol. 2011;24(4):453–64.CrossRef PubMed
    31.Perna AF, Satta E, Acanfora F, Lombardi C, Ingrosso D, De Santo NG. Increased plasma protein homocysteinylation in hemodialysis patients. Kidney Int. 2006;69(5):869–76.CrossRef PubMed
  • 作者单位:Ken-ichi Fujita (1) (3)
    Yusuke Masuo (2)
    Hidenori Okumura (2)
    Yusuke Watanabe (4)
    Hiromichi Suzuki (4)
    Yu Sunakawa (3) (6)
    Ken Shimada (3) (7)
    Kaori Kawara (3)
    Yuko Akiyama (3)
    Masanori Kitamura (5)
    Munetaka Kunishima (5)
    Yasutsuna Sasaki (1) (3) (8)
    Yukio Kato (2)

    1. Institute of Molecular Oncology, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
    3. Department of Medical Oncology, Saitama Medical University, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan
    2. Molecular Pharmacotherapeutics, Faculty of Pharmacy, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
    4. Department of Nephrology, Saitama Medical University, 38 Morohongou, Moroyama-cho, Iruma-gun, Saitama, 350-0495, Japan
    6. Department of Internal Medicine, Showa University Northern Yokohama Hospital, 35-1 Chigasakichuo, Tsuzuki-ku, Yokohama, 224-8503, Japan
    7. Department of Internal Medicine, Showa University Koto Toyosu Hospital, 5-1-38 Toyosu, Koto-ku, Tokyo, 135-8577, Japan
    5. Bioorganic Chemistry, Faculty of Pharmacy, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
    8. Department of Medical Oncology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Pharmacology and Toxicology
    Pharmacy
    Biochemistry
    Medical Law
    Biomedical Engineering
  • 出版者:Springer Netherlands
  • ISSN:1573-904X
文摘
Purpose Delayed plasma concentration profiles of the active irinotecan metabolite SN-38 were observed in cancer patients with severe renal failure (SRF), even though SN-38 is eliminated mainly via the liver. Here, we examined the plasma concentrations of unbound SN-38 in such patients.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700