Peak modulation in multicavity-coupled graphene-based waveguide system
详细信息    查看全文
文摘
Plasmonically induced transparency (PIT) in a multicavity-coupled graphene-based waveguide system is investigated theoretically and numerically. By using the finite element method (FEM), the multiple mode effect can be achieved, and blue shift is exhibited by tunable altering the chemical potential of the monolayer graphene. We find that the increasing number of the graphene rectangle cavity (GRC) achieves the multiple PIT peaks. In addition, we find that the PIT peaks reduce to just one when the distance between the third cavity and the second one is 100 nm. Easily to be experimentally fabricated, this graphene-based waveguide system has many potential applications for the advancement of 3D ultra-compact, high-performance, and dynamical modulation plasmonic devices.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700