Remanufacturing cathode from end-of-life of lithium-ion secondary batteries by Nd:YAG laser radiation
详细信息    查看全文
  • 作者:Wei-wei Liu ; Heng Zhang ; Li-hong Liu…
  • 关键词:Electrode materials ; End ; of ; life ; Electric vehicle ; Laser cleaning ; Remanufacturing
  • 刊名:Clean Technologies and Environmental Policy
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:18
  • 期:1
  • 页码:231-243
  • 全文大小:8,193 KB
  • 参考文献:Abraham DP, Knuth JL, Dees DW, Bloom I, Christophersen JP (2007) Performance degradation of high-power lithium-ion cells—electrochemistry of harvested electrodes. J Power Sources 170:465–475. doi:10.​1016/​j.​jpowsour.​2007.​03.​071 CrossRef
    Andersson AM, Abraham DP, Haasch R, MacLaren S, Liu J, Amine K (2002) Surface characterization of electrodes from high power lithium-ion batteries. J Electrochem Soc 149:A1358–A1369. doi:10.​1149/​1.​1505636 CrossRef
    Arif S, Kautek W (2013) Laser cleaning of particulates from paper: comparison between sized ground wood cellulose and pure cellulose. Appl Surf Sci 276:53–61. doi:10.​1016/​j.​apsusc.​2013.​02.​127 CrossRef
    Aurbach D, Gamolsky K, Markovsky B, Salitra G, Gofer Y, Heider U, Oesten R, Schmidt M (2000) The study of surface phenomena related to electrochemical lithium intercalation into LixMOy host materials (M=Ni, Mn). J Electrochem Soc 147:1322–1331. doi:10.​1149/​1.​1393357 CrossRef
    Brennan JL, Forster RJ (2003) Laser light and electrodes: interaction mechanisms and electroanalytical applications. J Phys Chem B 107:9344–9350. doi:10.​1021/​jp027189g CrossRef
    Briffaerts K, Spirinckx C, Linden AVd, Vrancken K (2009) Waste battery treatment options: comparing their environmental performance. Waste Manag 29:2321–2331. doi:10.​1016/​j.​wasman.​2009.​03.​019 CrossRef
    Buccolieri G, Nassisi V, Buccolieri A, Vona F, Castellano A (2013) Laser cleaning of a bronze bell. Appl Surf Sci 272:55–58. doi:10.​1016/​j.​apsusc.​2012.​03.​132 CrossRef
    Castillo S, Ansart F, Laberty-Robert C, Portal J (2002) Advances in the recovering of spent lithium battery compounds. J Power Sources 112:247–254. doi:10.​1016/​S0378-7753(02)00361-0 CrossRef
    Colclasure AM, Smith KA, Kee RJ (2011) Modeling detailed chemistry and transport for solid-electrolyte-interface (SEI) films in Li-ion batteries. Electrochim Acta 58:33–43. doi:10.​1016/​j.​electacta.​2011.​08.​067 CrossRef
    Dewulf J, Vorst GVd, Denturck K, Langenhove HV, Ghyoot W, Tytgat J, Vandeputte K (2010) Recycling rechargeable lithium ion batteries: critical analysis of natural resource savings. Resour Conserv Recycl 54:229–234. doi:10.​1016/​j.​resconrec.​2009.​08.​004 CrossRef
    Dorella G, Mansur MB (2007) A study of the separation of cobalt from spent Li-ion battery residues. J Power Sources 170:210–215. doi:10.​1016/​j.​jpowsour.​2007.​04.​025 CrossRef
    Gaines L (2014) The future of automotive lithium-ion battery recycling: charting a sustainable course. Sustain Mater Technol 1–2:2–7. doi:10.​1016/​j.​susmat.​2014.​10.​001
    Ganter MJ, Landi BJ, Babbitt CW, Anctil A, Gaustad G (2014) Cathode refunctionalization as a lithium ion battery recycling alternative. J Power Sources 256:274–280. doi:10.​1016/​j.​jpowsour.​2014.​01.​078 CrossRef
    Grimes SM, Donaldson JD, Chaudhary AJ, Hassan M-U (2000) Simultaneous recovery of metals and destruction of organic species: cobalt and phthalic acid. Environ Sci Technol 34:4128–4132. doi:10.​1021/​es990784k CrossRef
    Hinoue T, Kuwamoto N, Watanabe I (1999) Voltammetry using an electrode surface continuously renewed by laser ablation and its demonstration on electro-oxidation of L-ascorbic acid. J Electroanal Chem 466:31–37. doi:10.​1016/​S0022-0728(99)00114-X CrossRef
    Hsu S-C, Lin J (2006) Removal mechanisms of micro-scale particles by surface wave in laser cleaning. Opt Laser Technol 38:544–551. doi:10.​1016/​j.​optlastec.​2004.​11.​021 CrossRef
    Järvinen J, Orton F, Nelson T (2012) Electric vehicles in Australia’s national electricity market: energy market and policy implications. Electr J 25:63–87. doi:10.​1016/​j.​tej.​2012.​02.​014
    Kang DHP, Chen M, Ogunseitan OA (2013) Potential environmental and human health impacts of rechargeable lithium batteries in electronic waste. Environ Sci Technol 47:5495–5503. doi:10.​1021/​es400614y CrossRef
    Karnchanawong S, Limpiteeprakan P (2009) Evaluation of heavy metal leaching from spent household batteries disposed in municipal solid waste. Waste Manag 29:550–558. doi:10.​1016/​j.​wasman.​2008.​03.​018 CrossRef
    Kearns A, Fischer C, Watkins KG, Glasmacher M, Kheyrandish H, Brown A, Steen WM, Beahan P (1998) Laser removal of oxides from a copper substrate using Q-switched Nd:yAG radiation at 1064 nm, 532 nm and 266 nm. Appl Surf Sci 127–129:773–780. doi:10.​1016/​S0169-4332(97)00741-1 CrossRef
    Kostecki R, McLarnon F (2002) Degradation of LiNi0.8Co0.2O2 cathode surfaces in high-power lithium-ion batteries. Electrochem Solid-State Lett 5:A164–A166. doi:10.​1149/​1.​1482199 CrossRef
    Krüger J, Pentzien S, Conradi A (2008) Cleaning of artificially soiled paper with 532-nm nanosecond laser radiation. Appl Phys A 92:179–183. doi:10.​1007/​s00339-008-4476-4 CrossRef
    Kurfer J, Westermeier M, Tammer C, Reinhart G (2012) Production of large-area lithium-ion cells—preconditioning, cell stacking and quality assurance. CIRP Ann Manuf Technol 61:1–4. doi:10.​1016/​j.​cirp.​2012.​03.​101 CrossRef
    Kwon K, Kong F, McLarnon F, Evans JW (2002) Characterization of the SEI on a carbon film electrode by combined EQCM and spectroscopic ellipsometry. J Electrochem Soc 150:A229–A233. doi:10.​1149/​1.​1538223 CrossRef
    Lee SS, Kim TH, Hu SJ (2010) Joining technologies for automotive lithium-ion battery manufacturing—a review. In: Proceedings of the ASME 2010 international manufacturing science and engineering conference, pp 1–9. doi:10.​1115/​MSEC2010-34168
    Li L, Ge J, Chen R, Wu F, Chen S, Zhang X (2010) Environmental friendly leaching reagent for cobalt and lithium recovery from spent lithium-ion batteries. Waste Manag 30:2615–2621. doi:10.​1016/​j.​wasman.​2010.​08.​008 CrossRef
    Luetke M, Franke V, Techel A, Himmer T, Klotzbach U, Wetzig A, Beyer E (2011) A comparative study on cutting electrodes for batteries with lasers. Phys Procedia 12:286–291. doi:10.​1016/​j.​phpro.​2011.​03.​135 CrossRef
    Majumdar D, Majhi BK, Dutta A, Mandal R, Jash T (2015) Study on possible economic and environmental impacts of electric vehicle infrastructure in public road transport in Kolkata. Clean Technol Environ Policy 17:1093–1101. doi:10.​1007/​s10098-014-0868-7 CrossRef
    Marczak J (2001) Surface cleaning of art work by UV, VIS and IR pulse laser radiation. In: Salimbeni R (ed) Laser techniques and systems in art conservation. SPIE, Bellingham, pp 202–209. doi:10.​1117/​12.​445663 CrossRef
    Mishra D, Kim D-J, Ralph DE, Ahn J-G, Rhee YH (2008) Bioleaching of metals from spent lithium ion secondary batteries using Acidithiobacillus ferrooxidans. Waste Manag 28:333–338. doi:10.​1016/​j.​wasman.​2007.​01.​010 CrossRef
    Nagpure SC (2012) Multi-scale Characterization studies of aged Li-ion battery for improved performance. Ohio State University
    Nagpure SC, Bhushan B, Babu S, Rizzoni G (2009) Scanning spreading resistance characterization of aged Li-ion batteries using atomic force microscopy. Scr Mater 60:933–936. doi:10.​1016/​j.​scriptamat.​2009.​01.​033 CrossRef
    Nagpure SC, Dinwiddie R, Babu SS, Rizzoni G, Bhushan B, Frech T (2010) Thermal diffusivity study of aged Li-ion batteries using flash method. J Power Sources 195:872–876. doi:10.​1016/​j.​jpowsour.​2009.​08.​025 CrossRef
    Nie M, Chalasani D, Abraham DP, Chen Y, Bose A, Lucht BL (2013) Lithium ion battery graphite solid electrolyte interphase revealed by microscopy and spectroscopy. J Phys Chem C 117:1257–1267. doi:10.​1021/​jp3118055 CrossRef
    Park M-S, Lim Y-G, Kim J-H, Kim Y-J, Cho J, Kim J-S (2011) A Novel Lithium-Doping Approach for an Advanced Lithium Ion Capacitor. Adv Energy Mater 1:1002–1006. doi:10.​1002/​aenm.​201100270 CrossRef
    Paulino JF, Busnardo NG, Afonso JC (2008) Recovery of valuable elements from spent Li-batteries. J Hazard Mater 150:843–849. doi:10.​1016/​j.​jhazmat.​2007.​10.​048 CrossRef
    Peled E, Tow DB, Merson A, Gladkich A, Burstein L, Golodnitsky D (2001) Composition, depth profiles and lateral distribution of materials in the SEI built on HOPG-TOF SIMS and XPS studies. J Power Sources 97–98:52–57. doi:10.​1016/​S0378-7753(01)00505-5 CrossRef
    Peled E, Golodnitsky D, Ulus A, Yufit V (2004) Effect of carbon substrate on SEI composition and morphology. Electrochim Acta 50:391–395. doi:10.​1016/​j.​electacta.​2004.​01.​130 CrossRef
    Pietrelli L, Bellomo B, Fontana D, Montereali M (2005) Characterization and leaching of NiCd and NiMH spent batteries for the recovery of metals. Waste Manag 25:221–226. doi:10.​1016/​j.​wasman.​2004.​12.​013 CrossRef
    Poon M, McCreery RL, Engstrom R (1988) Laser activation of carbon electrodes. relationship between laser-induced surface effects and electron transfer activation. Anal Chem 60:1725–1730. doi:10.​1021/​ac00168a018 CrossRef
    Qiu FL, Compton RG, Marken F, Wilkins SJ, Goeting CH, Foord JS (2000) Laser activation voltammetry: selective removal of reduced forms of methyl viologen deposited on glassy carbon and boron-doped diamond electrodes. Anal Chem 72:2362–2370. doi:10.​1021/​ac991392z CrossRef
    Ramadass P, Haran B, Gomadam PM, White R, Popov BN (2004) Development of first principles capacity fade model for li-ion cells. J Electrochem Soc 151:A196–A203. doi:10.​1149/​1.​1634273 CrossRef
    Ramoni MO, Zhang H-C (2013) End-of-life (EOL) issues and options for electric vehicle batteries. Clean Technol Environ Policy 15:881–891. doi:10.​1007/​s10098-013-0588-4 CrossRef
    Ravet N, Chouinard Y, Magnan JF, Besner S, Gauthier M, Armand M (2001) Electroactivity of natural and synthetic triphylite. J Power Sources 97–98:503–507. doi:10.​1016/​S0378-7753(01)00727-3 CrossRef
    Sankarasubramanian S, Krishnamurthy B (2012) A capacity fade model for lithium-ion batteries including diffusion and kinetics. Electrochim Acta 70:248–254. doi:10.​1016/​j.​electacta.​2012.​03.​063 CrossRef
    Schauerman CM, Ganter MJ, Gaustad G, Babbitt CW, Raffaelle RP, Landi BJ (2012) Recycling single-wall carbon nanotube anodes from lithium ion batteries. J Mater Chem 22:12008–12015. doi:10.​1039/​C2JM31971C CrossRef
    Smalley JF, Newton MD, Fledberg SW (2000) An informative subtlety of itemperature-jump or coulostatic responses for surface-attached specie. Electrochem Commun 2:832–838. doi:10.​1016/​S1388-2481(00)00132-6 CrossRef
    Tarascon J-M, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367. doi:10.​1038/​35104644 CrossRef
    Tasaki K, Goldberg A, Lian J-J, Walker M, Timmons A, Harris SJ (2009) Solubility of lithium salts formed on the lithium-ion battery negative electrode surface in organic solvents. J Electrochem Soc 156:A1019–A1027. doi:10.​1149/​1.​3239850 CrossRef
    Teixeira ACR, Silva DLd, Neto LdVBM, Diniz ASAC, Sodré JR (2015) A review on electric vehicles and their interaction with smart grids: the case of Brazil. Clean Technol Environ Policy 17:841–857. doi:10.​1007/​s10098-014-0865-x CrossRef
    Uccello A, Maffini A, Dellasega D, Passoni M (2013) Laser cleaning of pulsed laser deposited rhodium films for fusion diagnostic mirrors. Fusion Eng Des 88:1347–1351. doi:10.​1016/​j.​fusengdes.​2013.​01.​036 CrossRef
    USABC (1996) Electric vehicle battery test procedures manual (Revision 2). USABC, Arlington
    Yazami R (1999) Surface chemistry and lithium storage capability of the graphite–lithium electrode. Electrochim Acta 45:87–97. doi:10.​1016/​S0013-4686(99)00195-4 CrossRef
    Ye Y, Yuan X, Xiang X, Cheng X, Miao X (2012) Laser cleaning of particle and grease contaminations on the surface of optics. Opt-Int J Light Electron Opt 123:1056–1060. doi:10.​1016/​j.​ijleo.​2011.​07.​030 CrossRef
    Zhang Y, Wang C-Y (2009) Cycle-life characterization of automotive lithium-ion batteries with LiNiO2 cathode. J Electrochem Soc 156:A527–A535. doi:10.​1149/​1.​3126385 CrossRef
    Zhang H, Liu W, Dong Y, Zhang HC, Chen H (2014) A method for pre-determining the optimal remanufacturing point of lithium ion batteries. Procedia CIRP 15:218–222. doi:10.​1016/​j.​procir.​2014.​06.​064 CrossRef
    Zhao H, Park S-J, Shi F, Fu Y, Battaglia V, Ross PN, Liu G (2014) Propylene carbonate (pc)-based electrolytes with high coulombic efficiency for lithium-ion batteries. J Electrochem Soc 161:A194–A200. doi:10.​1149/​2.​095401jes CrossRef
  • 作者单位:Wei-wei Liu (1)
    Heng Zhang (1)
    Li-hong Liu (1)
    Xiao-chuan Qing (1)
    Zi-jue Tang (1)
    Ming-zheng Li (1) (2)
    Jin-song Yin (3)
    Hong-chao Zhang (1) (4)

    1. School of Mechanical Engineering, Dalian University of Technology, Dalian, 116024, People’s Republic of China
    2. School of Engineering, University of Liverpool, Liverpool, L69 3GH, UK
    3. Zhangjiagang Furui Special Equipment Co., Ltd., Zhangjiagang, 215637, People’s Republic of China
    4. Department of Industrial Engineering, Texas Tech University, Lubbock, TX, 79409, USA
  • 刊物类别:Engineering
  • 刊物主题:Industrial and Production Engineering
    Industrial Chemistry and Chemical Engineering
    Industrial Pollution Prevention
    Environmental Economics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1618-9558
文摘
The electric vehicle industry has been rapidly developing internationally. Electric vehicle batteries (EVBs) are perceived as a low environmental impact energy storage technology. While the service life of an EVB is relatively long, a significant number of battery packs will reach the end of their service lives eventually. The end-of-life (EOL) EVBs may still have appreciable residual value for remanufacturing and secondary use. Some solid-electrolyte interface (SEI) layers will persist on the surface of electrodes deposit after a period of continuous cycling, causing the battery degradation and failure. An approach to battery end-of-life management was introduced involving remanufacturing of the cathode from EOL lithium-ion battery electrodes, and a recent study on remanufacturing process of the degraded EVBs using pulse laser to radiate SEI on the electrode surface was presented in this paper, here on a laboratory scale. Based on experimental data, the SEI film removal was carried out with laser energy intensity ranging from 0.035 to 0.169 J/mm2. The remanufactured cathodes were characterized through a combination of scanning electron microscopy, Fourier transform infrared spectroscopy, and wavelength dispersive spectrometer, respectively. The experimental results indicated that the remanufacturing treatments were successful in removing the EOL by-products (e.g., SEI films) and upgrading the cathode to its pre-cycling functionality. It is suggested that the fade capacity of a lithium-ion battery can be recovered by using laser radiation method.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700