Implication of the chemical index of alteration as a paleoclimatic perturbation indicator: an example from the lower Neoproterozoic strata of Aksu, Xinjiang, NW China
详细信息    查看全文
  • 作者:Haifeng Ding ; Dongsheng Ma ; Chunyan Yao ; Qizhong Lin ; Linhai Jing
  • 关键词:geochemistry ; Neoproterozoic glaciations ; palaeoclimate ; Aksu ; NW China
  • 刊名:Geosciences Journal
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:20
  • 期:1
  • 页码:13-26
  • 全文大小:908 KB
  • 参考文献:Bahlburg, H. and Dobrzinski, N., 2011, A review of the Chemical Index of Alteration (CIA) and its application to the study of Neoproterozoic glacial deposits and climate transitions. In: Arnaud, E., Halverson, G.P., and Shields-Zhou, G. (eds.), The Geological Record of Neoproterozoic Glaciations. Geological Society, London, p. 81–92.
    Busfield, M.E. and Le Heron, D.P., 2014, Sequencing the Sturtian icehouse: dynamic ice behaviour in South Australia. Journal of the Geological Society, 171, 443–456.CrossRef
    Chen, Y., Xu, B., Zhan, S., and Li, Y.G., 2004, First mid-Neoproterozoic paleomagnetic results from the Tarim Basin (NW China) and their geodynamic implications. Precambrian Research, 133, 271–281.CrossRef
    Colin, C., Kissel, C., Blamart, D., and Turpin, L., 1998, Magnetic properties of sediments in the Bay of Bengal and the Andaman Sea: impact of rapid North Atlantic Ocean climatic events on the strength of the Indian monsoon. Earth and Planetary Science Letters, 160, 623–635.CrossRef
    Cox, R., Lowe, D.R., and Cullers, R.L., 1995, The Influence of Sediment Recycling and Basement Composition on Evolution of Mudrock Chemistry in the Southwestern United-States. Geochimica et Cosmochimica Acta, 59, 2919–2940.CrossRef
    Cullers, R.L. and Berendsen, P., 1998, The provenance and chemical variation of sandstones associated with the Mid-continent Rift System, USA. European Journal of Mineralogy, 10, 987–1002.CrossRef
    Fedo, C.M., Eriksson, K.A., and Krogstad, E.J., 1996, Geochemistry of shales from the Archean (similar to 3.0 Ga) Buhwa greenstone belt, Zimbabwe: Implications for provenance and source-area weathering. Geochimica et Cosmochimica Acta, 60, 1751–1763.CrossRef
    Fedo, C.M., Grant, G.M., and Nesbitt, H.W., 1997, Paleoclimatic control on the composition of the Paleoproterozoic Serpent Formation, Huronian Supergroup, Canada: a greenhouse to icehouse transition. Precambrian Research, 86, 201–223.CrossRef
    Fedo, C.M., Nesbitt, H.W., and Young, G.M., 1995, Unraveling the Effects of Potassium Metasomatism in Sedimentary-Rocks and Paleosols, with Implications for Paleoweathering Conditions and Provenance. Geology, 23, 921–924.CrossRef
    Franzinelli, E. and Potter, P.E., 1983, Petrology, chemistry and texture of modern river sands, Amazon river system. Journal of Geology, 91, 23–39.CrossRef
    Gao, Z.J. and Qian, J.X., 1985, Sinian Glacial Deposits in Xinjiang, Northwest China. Precambrian Research, 29, 143–147.CrossRef
    Gao, Z.J., Wang, W.Y., Peng, C.W., Li, Y.A., and Xiao, B., 1986, The Sinian system on Aksu-Wushi region, Xinjiang, China. Xinjiang People’s Publishing House, Urumuqi, 184 p.
    Gao, Z.J., Wang, W.Y., Peng, C.W., Li, Y.A., and Xiao, B., 1987, The Sinian system of Xinjiang. Xinjiang People’s Publishing House, Urumqi, 173 p.
    Ghosh, S. and Sarkar, S., 2010, Geochemistry of Permo-Triassic mudstone of the Satpura Gondwana basin, central India: Clues for provenance. Chemical Geology, 277, 78–100.CrossRef
    Goldberg, K. and Humayun, M., 2010, The applicability of the Chemical Index of Alteration as a paleoclimatic indicator: An example from the Permian of the Parana Basin, Brazil. Palaeogeography Palaeoclimatology Palaeoecology, 293, 175–183.CrossRef
    Halverson, G.P., Wade, B.P., Hurtgen, M.T., and Barovich, K.M., 2010, Neoproterozoic chemostratigraphy. Precambrian Research, 182, 337–350.CrossRef
    He, X.B., Xu, B., and Yuan, Z.Y., 2007, C-isotope composition and correlation of the Upper Neoproterozoic in Keping area, Xinjiang. Chinese Science Bulletin, 52, 504–511.CrossRef
    Hoffman, P.F., Kaufman, A.J., Halverson, G.P., and Schrag, D.P., 1998, A Neoproterozoic snowball earth. Science, 281, 1342–1346.CrossRef
    Hoffman, P.F. and Li, Z.X., 2009, A palaeogeographic context for Neoproterozoic glaciation. Palaeogeography Palaeoclimatology Palaeoecology, 277, 158–172.CrossRef
    Hoffman, P.F. and Schrag, D.P., 2002, The snowball Earth hypothesis: testing the limits of global change. Terra Nova, 14, 129–155.CrossRef
    Huang, B.C., Xu, B., Zhang, C.X., Li, Y.A., and Zhu, R.X., 2005, Paleomagnetism of the Baiyisi volcanic rocks (ca. 740 Ma) of Tarim, Northwest China: A continental fragment of neoproterozoic Western Australia? Precambrian Research, 142, 83–92.CrossRef
    Huang, J., Feng, L.J., Lu, D.B., Zhang, Q.R., Sun, T., and Chu, X.L., 2014, Multiple climate cooling prior to Sturtian glaciations: Evidence from chemical index of alteration of sediments in South China. Scientific Reports, 4, 1–4.
    Johnsson, M.J., Stallard, R.F., and Lundberg, N., 1991, Controls on the composition of fluvial sands from a tropical weathering environment: sands of the Orinoco River drainage basin, Venezuela and Columbia. Geological Society of America Bulletin, 103, 1622–1647.CrossRef
    Johnsson, M.J., Stallard, R.F., and Meade, R.H., 1988, First-cycle quartz arenites in the Orinoco River basin, Venezuela and Columbia. Journal of Geology, 96, 263–277.CrossRef
    Kasemann, S.A., von Strandmann, P.A.E.P., Prave, A.R., Fallick, A.E., Elliott, T., and Hoffmann, K.H., 2014, Continental weathering following a Cryogenian glaciation: Evidence from calcium and magnesium isotopes. Earth and Planetary Science Letters, 396, 66–77.CrossRef
    Lee, I.Y., 2002, Provenance derived from the geochemistry of late Paleozoic-early Mesozoic mudrocks of the Pyeongan Supergroup, Korea. Sedimentary Geology, 149, 219–235.CrossRef
    Li, Q.G., Liu, S.W., and Han, B.F., 2004, The geochemical character of Sinian tillite in Kuruktag, Xinjiang and its implications to provenance (in Chinese). Progress in Natural Science, 14, 999–1005.
    Li, Z.X., Bogdanova, S.V., Collins, A.S., Davidson, A., De Waele, B., Ernst, R.E., Fitzsimons, I.C.W., Fuck, R.A., Gladkochub, D.P., Jacobs, J., Karlstrom, K.E., Lu, S., Natapov, L.M., Pease, V., Pisarevsky, S.A., Thrane, K., and Vernikovsky, V., 2008, Assembly, configuration, and break-up history of Rodinia: A synthesis. Precambrian Research, 160, 179–210.CrossRef
    Long, X.P., Sun, M., Yuan, C., Xiao, W.J., and Cai, K., 2008, Early Paleozoic sedimentary record of the Chinese Altai: Implications for its tectonic evolution. Sedimentary Geology, 208, 88–100.CrossRef
    Maslov, A.V., 2010, Glaciogenic and related sedimentary rocks: Main lithochemical features. Communication 1. Late Archean and Proterozoic. Lithology and Mineral Resources, 45, 377–397.CrossRef
    McLennan, S.M., 1993, Weathering and Global Denudation. Journal of Geology, 101, 295–303.CrossRef
    McLennan, S.M., Hemming, S., McDaniel, D.K., and Hanson, G.N., 1993, Geochemical approaches to sedimentation, provenance, and tectonics. Geological Society of America Special Paper, 284, 21–40.CrossRef
    McLennan, S.M. and Taylor, S.R., 1980, Th and U in sedimentary rocks: crustal evolution and sedimentary recycling. Nature, 285, 621–624.CrossRef
    McLennan, S.M. and Taylor, S.R., 1991, Sedimentary rocks and crustal evolution: tectonic setting and secular trends. Journal of Geology, 99, 1–21.CrossRef
    Nesbitt, H.W., 1979, Mobility and Fractionation of Rare-Earth Elements during Weathering of a Granodiorite. Nature, 279, 206–210.CrossRef
    Nesbitt, H.W., Markovics, G., and Price, R.C., 1980, Chemical Processes Affecting Alkalis and Alkaline-Earths during Continental Weathering. Geochimica et Cosmochimica Acta, 44, 1659–1666.CrossRef
    Nesbitt, H.W. and Young, G.M., 1982, Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites. Nature, 299, 715–717.CrossRef
    Nesbitt, H.W. and Young, G.M., 1984, Prediction of Some Weathering Trends of Plutonic and Volcanic-Rocks Based on Thermodynamic and Kinetic Considerations. Geochimica et Cosmochimica Acta, 48, 1523–1534.CrossRef
    Nesbitt, H.W. and Young, G.M., 1989, Formation and Diagenesis of Weathering Profiles. Journal of Geology, 97, 129–147.CrossRef
    Nesbitt, H.W. and Young, G.M., 1996, Petrogenesis of sediments in the absence of chemical weathering: Effects of abrasion and sorting on bulk composition and mineralogy. Sedimentology, 43, 341–358.CrossRef
    Panahi, A. and Young, G.M., 1997, A geochemical investigation into the provenance of the Neoproterozoic Port Askaig Tillite, Dalradian Supergroup, western Scotland. Precambrian Research, 85, 81–96.CrossRef
    Potter, P.E., 1978, Petrology and chemistry of modern big river sands. Journal of Geology, 86, 423–449.CrossRef
    Rieu, R., Allen, P.A., Plotze, M., and Pettke, T., 2007a, Climatic cycles during a Neoproterozoic “snowball” glacial epoch. Geology, 35, 299–302.CrossRef
    Rieu, R., Allen, P.A., Plotze, M., and Pettke, T., 2007b, Compositional and mineralogical variations in a Neoproterozoic glacially influenced succession, Mirbat area, south Oman: Implications for paleoweathering conditions. Precambrian Research, 154, 248–265.CrossRef
    Scheffler, K., Buehmann, D., and Schwark, L., 2006, Analysis of Late Palaeozoic glacial to postglacial sedimentary successions in South Africa by geochemical proxies–Response to climate evolution and sedimentary environment. Palaeogeography Palaeoclimatology Palaeoecology, 240, 184–203.CrossRef
    Scheffler, K., Hoernes, S., and Schwark, L., 2003, Global changes during Carboniferous-Permian glaciation of Gondwana: Linking polar and equatorial climate evolution by geochemical proxies. Geology, 31, 605–608.CrossRef
    Taylor, S.R. and Mclennan, S.M., 1985, The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publications, Oxford, 312 p.
    Turner, S.A., 2010, Sedimentary record of Late Neoproterozoic rifting in the NW Tarim Basin, China. Precambrian Research, 181, 85–96.CrossRef
    Weaver, C.E., 1989, Clays, muds, and shales. Elsevier, Amsterdam, 819 p.
    Wen, B., Li, Y.X., and Zhu, W.B., 2012, Peleomagnetism of the Neoproterozoic Diamictites of the Qiaoenbrak Formation in the Aksu Area, NW China: Constraints on the Paleogeographic Position of the Tarim Block. Precambrian Research, 226, 75–90.CrossRef
    Xiao, S.H., Bao, H.M., Wang, H.F., Kaufman, A.J., Zhou, C.M., Li, G.X., Yuan, X.L., and Ling, H.F., 2004, The Neoproterozoic Quruqtagh Group in eastern Chinese Tianshan: evidence for a post-Marinoan glaciation. Precambrian Research, 130, 1–26.CrossRef
    Xu, B., Jian, P., Zheng, H.F., Zou, H.B., Zhang, L.F., and Liu, D.Y., 2005, U-Pb zircon geochronology and creochemistry of Neoproterozoic volcanic rocks in the Tarim Block of northwest China: implications for the breakup of Rodinia supercontinent and Neoproterozoic glaciations. Precambrian Research, 136, 107–123.CrossRef
    Xu, B., Xiao, S.H., Zou, H.B., Chen, Y., Li, Z.X., Song, B., Liu, D.Y., Zhou, C.M., and Yuan, X.L., 2009, SHRIMP zircon U-Pb age constraints on Neoproterozoic Quruqtagh diamictites in NW China. Precambrian Research, 168, 247–258.CrossRef
    Xu, B., Zheng, H.F., Yao, H.T., and Li, Y.G., 2003, C-isotope composition and significance of the Sinian on the Tarim plate. Chinese Science Bulletin, 48, 385–389.CrossRef
    Young, G.A., Minter, W.L., and Theron, J.N., 2004, Geochemistry and palaeogeography of upper Ordovician glaciogenic sedimentary rocks in the Table Mountain Group, South Africa. Palaeogeography Palaeoclimatology Palaeoecology, 214, 323–345.CrossRef
    Young, G.M., 1999, Some aspects of the geochemistry, provenance and palaeoclimatology of the Torridonian of NW Scotland. Journal of the Geological Society, 156, 1097–1111.CrossRef
    Young, G.M., 2002a, Geochemical investigation of a Neoproterozoic glacial unit: The Mineral Fork Formation in the Wasatch Range, Utah. Geological Society of America Bulletin, 114, 387–399.CrossRef
    Young, G.M., 2002b, Stratigraphic and tectonic settings of Proterozoic glaciogenic rocks and banded iron-formations: relevance to the snowball Earth debate. Journal of African Earth Sciences, 35, 451–466.CrossRef
    Young, G.M. and Nesbitt, H.W., 1999, Paleoclimatology and provenance of the glaciogenic Gowganda Formation (Paleoproterozoic), Ontario, Canada: A chemostratigraphic approach. Geological Society of America Bulletin, 111, 264–274.CrossRef
    Zhan, S., Chen, Y., Xu, B., Wang, B., and Faure, M., 2007, Late Neoproterozoic paleomagnetic results from the Sugetbrak Formation of the Aksu area, Tarim basin (NW China) and their implications to paleogeographic reconstructions and the snowball Earth hypothesis. Precambrian Research, 154, 143–158.CrossRef
    Zheng, B.H., Zhu, W.B., Jahn, B.M., Shu, L.S., Zhang, Z.Y., and Su, J.B., 2010, Subducted Precambrian oceanic crust: geochemical and Sr-Nd isotopic evidence from metabasalts of the Aksu blueschist, NW China. Journal of the Geological Society, 167, 1161–1170.CrossRef
    Zhu, W.B., Zheng, B.H., Shu, L.S., Ma, D.S., Wu, H.L., Li, Y.X., Huang, W.T., and Yu, J.J., 2011, Neoproterozoic tectonic evolution of the Precambrian Aksu blueschist terrane, northwestern Tarim, China: Insights from LA-ICP-MS zircon U-Pb ages and geochemical data. Precambrian Research, 185, 215–230.CrossRef
  • 作者单位:Haifeng Ding (1)
    Dongsheng Ma (2)
    Chunyan Yao (3)
    Qizhong Lin (1)
    Linhai Jing (1)

    1. Institute of Remote Sensing and Digital Earth, Key Laboratory of Digital Earth Science, Chinese Academy of Sciences, Beijing, 100094, China
    2. State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210023, China
    3. Nanjing Institute of Geology and Mineral Resources, Nanjing, 210016, China
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Geosciences
  • 出版者:The Geological Society of Korea, co-published with Springer
  • ISSN:1598-7477
文摘
The Neoproterozoic successions in the Aksu region, NW China, which lies unconformably on the Precambrian Aksu Group basement, comprises the Qiaoenbrak, Yuermeinak, Sugetbrak, and Chigebrak formations (from bottom to top). The two lowermost units include two distinct glacial diamictites, which indicate distinct episodes of glaciations. We report the major and trace element (including rare earth element) data for the Qiaoenbrak, Yuermeinak, and Sugetbrak formations to identify the paleoclimatic perturbations. The chemical index of alteration (CIA) values show variations from Qiaoenbrak to Yuermeinak, then Sugetbrak formations. The diamictites have relatively lower chemical index of alteration values (45.23–59.64) than inter-, post- and non-glacial sediments (48.28–66.96). This result supported the condition that the diamictites underwent relatively weak chemical weathering from a dry-cold sedimentary environment, which is associated with the sedimentary facies description. The lower Neoproterozoic successions recoded at least two glaciations, one is Qiaoenbrak glaciation and the other is Yuermeinak glaciation. Keywords geochemistry Neoproterozoic glaciations palaeoclimate Aksu NW China

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700