Vegetation NDVI Linked to Temperature and Precipitation in the Upper Catchments of Yellow River
详细信息    查看全文
  • 作者:Fanghua Hao (1)
    Xuan Zhang (1)
    Wei Ouyang (1) wei@itc.nl
    Andrew K. Skidmore (2)
    A. G. Toxopeus (2)
  • 关键词:Vegetation dynamics – ; Correlation analysis – ; MODIS – ; Climatic feature – ; Yellow River
  • 刊名:Environmental Modeling and Assessment
  • 出版年:2012
  • 出版时间:August 2012
  • 年:2012
  • 卷:17
  • 期:4
  • 页码:389-398
  • 全文大小:727.1 KB
  • 参考文献:1. Arsenault, E., & Bonn, F. (2005). Evaluation of soil erosion protective cover by crop residues using vegetation indices and spectral mixture analysis of multispectral and hyperspectral data. Catena, 62(2–3), 157–172.
    2. Belda, F., & Melia, J. (2000). Relationships between climatic parameters and forest vegetation: Application to burned area in Alicante (Spain). Forest Ecology and Management, 135(1–3), 195–204.
    3. Carlson, T. N., & Arthur, S. T. (2000). The impact of land use—land cover changes due to urbanization on surface microclimate and hydrology: a satellite perspective. Global and Planetary Change, 25(1–2), 49–65.
    4. Carrera-Hernandez, J. J., & Gaskin, S. J. (2007). Spatio temporal analysis of daily precipitation and temperature in the Basin of Mexico. Journal of Hydrology, 336(3–4), 231–249.
    5. Chen, J. S., He, D. W., & Cui, S. B. (2003). The response of river water quality and quantity to the development of irrigated agriculture in the last 4 decades in the Yellow River Basin, China. Water Resources Research, 39(3), 1047.
    6. Feng, J. M., Wang, T., Qi, S. Z., & Xie, C. W. (2005). Land degradation in the source region of the Yellow River, northeast Qinghai-Xizang Plateau: Classification and evaluation. Environmental Geology, 47(4), 459–466.
    7. Fensholt, R., Sandholt, I., & Rasmussen, M. S. (2004). Evaluation of MODIS LAI, fAPAR and the relation between fAPAR and NDVI in a semi-arid environment using in situ measurements. Remote Sensing of Environment, 91(3–4), 490–507.
    8. Fritts, H. C. (1974). Relationships of ring widths in arid-site conifers to variations in monthly temperature and precipitation. Ecological Monographs, 44, 411–440.
    9. Hansen, M. C., DeFries, R., Townshend, S., Sohlberg, R., Dimiceli, C., & Carroll, M. (2002). Towards an operational MODIS continuous field of percent tree cover algorithm: Examples using AVHRR and MODIS data. Remote Sensing of Environment, 83(1–2), 303–319.
    10. Yi, H., Jialiang, C., He, Y., & Mantang, C. (2009). Correlation of precipitation to temperature variation in the Huanghe River (Yellow River) basin during 1957–2006. Journal of Hydrology, 372(1–4), 1–8.
    11. Jeffrey, S. J., Carter, J. O., Moodie, K. B., & Beswick, A. R. (2001). Using spatial interpolation to construct a comprehensive archive of Australian climate data. Environmental Modelling and Software, 16(4), 309–330.
    12. La Puma, I. P., Philippi, T. E., & Oberbauer, S. F. (2007). Relating NDVI to ecosystem CO2 exchange patterns in response to season length and soil warming manipulations in arctic Alaska. Remote Sensing of Environment, 109(2), 225–236.
    13. Lin, G., Phillips, S. L., & Ehleringer, J. R. (1996). Monsoonal precipitation responses of shrubs in a cold desert community on the Colorado Plateau. Oecologia, 106(1), 8–17.
    14. Loboda, T. V., & Csiszar, I. A. (2007). Reconstruction of fire spread within wildland fire events in Northern Eurasia from the MODIS active fire product. Global and Planetary Change, 56(3–4), 258–273.
    15. Long, H., Mao, L. Q., Che, Z. X., & Yang, G. W. (2006). Impact on water resources in Yellow River with climatic change. Journal of Water Resources and Water Engineering, 17(4), 74–77.
    16. Lu, H., Raupach, M. R., McVicar, T. R., & Barrett, D. J. (2003). Decomposition of vegetation cover into woody and herbaceous components using AVHRR NDVI time series. Remote Sensing of Environment, 86(1), 1–18.
    17. McAlpine, C. A., Syktus, J., Deo, R. C., Lawrence, P. J., McGowan, H. A., Watterson, I. G., et al. (2007). Modeling the impact of historical land cover change on Australia's regional climate. Geophysical Research Letters, 34(22), L22711.
    18. Neal, C., Reynolds, B., Neal, M., Hughes, S., Wickham, H., Hill, L., et al. (2003). Soluble reactive phosphorus levels in rainfall, cloud water, through fall, stem flow, soil waters, stream waters and ground waters for the Upper River Severn area, Plynlimon, mid Wales. The Science of the Total Environment, 314(10), 99–120.
    19. Okin, G. S., Murray, B., & Schlesinger, W. H. (2001). Degradation of sandy arid shrubland environments: Observations, process modeling, and management implications. Journal of Arid Environments, 47(2), 123–144.
    20. Ouyang, Wei, Wang, Xuelei, Hao, Fanghua, & Srinivasan, R. (2009). Temporal-spatial dynamics of vegetation variation on non-point source nutrient pollution. Ecological Modeling, 220(20), 2702–2713.
    21. Pflugmacher, D., Krankina, O. N., & Cohen, W. B. (2007). Satellite-based peatland mapping: Potential of the MODIS sensor. Global and Planetary Change, 56(3–4), 248–257.
    22. Piao, S. L., Fang, J. Y., & He, J. S. (2006). Variations in vegetation net primary production in the Qinghai-Xizang Plateau, China, from 1982 to 1999. Climatic Change, 74(1–3), 253–267.
    23. Olofsson, P., Eklundh, L., Lagergren, F., et al. (2007). Estimating net primary production for Scandinavian forests using data from Terra/MODIS. Advances in Space Research, 39(1), 125–130.
    24. Qian, W. H., Xu, T., & Quan, L. S. (2004). Regional characteristics of dust storms in China. Atmospheric Environment, 38(29), 4895–4907.
    25. Running, S. W., Justice, C. O., Salomonson, V., Hall, D., Barker, J., Kaufmann, Y. J., et al. (1994). Terrestrial remote sensing science and algorithms planned for EOS/MODIS. International Journal of Remote Sensing, 15(17), 3587–3620.
    26. Seaquist, J. W., Olsson, L., & Ard枚, J. (2003). A remote sensing-based primary production model for grassland biomes. Ecological Modelling, 169(1), 131–155.
    27. Stefanov, W. L., & Netzband, M. (2005). Assessment of ASTER land cover and MODIS NDVI data at multiple scales for ecological characterization of an arid urban center. Remote Sensing of Environment, 99(1–2), 31–43.
    28. Wang, G. X., Cheng, G. D., Shen, Y. P., & Qian, J. (2003). Influence of land cover changes on the physical and chemical properties of alpine meadow soil. Chinese Science Bulletin, 48(2), 118–124.
    29. Wang, X. D., Li, M. H., Liu, S. Z., & Liu, G. C. (2006). Fractal characteristics of soils under different land-use patterns in the arid and semiarid regions of the Tibetan Plateau, China. Geoderma, 134(1–2), 56–61.
    30. Weiss, J. L., Gutzler, D. S., Coonrod, J. E. A., & Dahm, C. N. (2004). Seasonal and inter-annual relationships between vegetation and climate in central New Mexico, USA. Journal of Arid Environments, 57(4), 507–534.
    31. Weiss, J. L., Gutzler, D. S., Gutzler, D. S., Coonrod, J. E. A., & Dahm, C. N. (2004). Long-term vegetation monitoring with NDVI in a diverse semiarid setting, central New Mexico, USA. Journal of Arid Environments, 58(2), 249–272.
    32. Wittenberg, L., Malkinson, D., Beeri, O., Halutzy, A., & Tesler, N. (2007). Spatial and temporal patterns of vegetation recovery following sequences of forest fires in a Mediterranean landscape. Mt. Carmel Israel. Catena, 71(1), 76–83.
    33. Xu, J. X., & Yan, Y. X. (2005). Scale effects on specific sediment yield in the Yellow River basin and geomorphological explanations. Journal of Hydrology, 307(1–4), 219–232.
    34. Xu, X. K., Levy, J. K., Lin, Z. H., & Hong, C. (2006). An investigation of sand-dust storm events and land surface characteristics in China using NOAA NDVI data. Global and Planetary Change, 52(1–4), 182–196.
    35. Yang, J. P., Ding, Y. J., & Chen, R. S. (2006). Spatial and temporal of variations of alpine vegetation cover in the source regions of the Yangtze and Yellow Rivers of the Tibetan Plateau from 1982 to 2001. Environmental Geology, 50(3), 313–322.
    36. Zeng, Y. N., Feng, Z. D., & Cao, G. C. (2003). Land cover change and its environmental impact in the Upper reaches of the Yellow River, Northeast Qinghai-Tibetan Plateau. Mountain Research and Development, 23(4), 353–361.
    37. Zhan, X., Sohlberg, R. A., Townshend, J. R. G., DiMiceli, C., Carroll, M. L., Eastman, J. C., et al. (2002). Detection of land cover changes using MODIS 250 m data. Remote Sensing of Environment, 83(1–2), 336–350.
    38. Zhou, D. W., Fan, G. Z., Huang, R. H., Fang, Z. F., Liu, Y. Q., & Li, H. Q. (2007). Interannual variability of the normalized difference vegetation index on the Tibetan plateau and its relationship with climate change. Advance in Atmospheric Science, 24(3), 474–484.
  • 作者单位:1. School of Environment, State Key Laboratory of Water Environment Simulation, Beijing Normal University, Beijing, 100875 China2. Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, Hengelosestraat 99, P.O. Box 6, Enschede, 7500 AA The Netherlands
  • ISSN:1573-2967
文摘
Vegetation in the upper catchment of Yellow River is critical for the ecological stability of the whole watershed. The dominant vegetation cover types in this region are grassland and forest, which can strongly influence the eco-environmental status of the whole watershed. The normalized difference vegetation index (NDVI) for grassland and forest has been calculated and its daily correlation models were deduced by Moderate Resolution Imaging Spectroradiometer products on 12 dates in 2000, 2003, and 2006. The responses of the NDVI values with the inter-annual grassland and forest to three climatic indices (i.e., yearly precipitation and highest and lowest temperature) were analyzed showing that, except for the lowest temperature, the yearly precipitation and highest temperature had close correlations with the NDVI values of the two vegetation communities. The value of correlation coefficients ranged from 0.815 to 0.951 (p < 0.01). Furthermore, the interactions of NDVI values of vegetation with the climatic indicators at monthly interval were analyzed. The NDVI of vegetation and three climatic indices had strong positive correlations (larger than 0.733, p < 0.01). The monthly correlations also provided the threshold values for the three climatic indictors, to be used for simulating vegetation growth grassland under different climate features, which is essential for the assessment of the vegetation growth and for regional environmental management.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700