The Improvement of SAM Accumulation by Integrating the Endogenous Methionine Adenosyltransferase Gene SAM2 in Genome of the Industrial Saccharomyces cerevisiae Strain
详细信息    查看全文
  • 作者:Weijun Zhao ; Feng Shi ; Baojian Hang ; Lei Huang…
  • 关键词:S ; Adenosyl ; l ; methionine (SAM) ; Methionine adenosyltransferase ; Saccharomyces cerevisiae ; Biosynthesis ; Three ; phase fed ; batch strategy
  • 刊名:Applied Biochemistry and Biotechnology
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:178
  • 期:6
  • 页码:1263-1272
  • 全文大小:427 KB
  • 参考文献:1.Giulidori, P., Galli-Kienle, M., Catto, E., & Stramentinoli, G. (1984). Transmethylation, trans-sulfuration, and aminopropylation reactions of S-adenosyl-l-methionine in vivo. Journal of Biological Chemistry, 259, 4205–4211.
    2.Winkler, W. C., Nahvi, A., Sudarsan, N., Barrick, J. E., & Breaker, R. R. (2003). An mRNA structure that controls gene expression by binding S-adenosylmethionine. Nature Structural Biology, 10, 701–707.CrossRef
    3.Lieber, C. S. (1999). Role of S-adenosyl-l-methionine in the treatment of liver diseases. Journal of Hepatology, 30, 1155–1159.CrossRef
    4.Cimino, M., Vantini, G., Algeri, S., Curatola, G., Pezzoli, C., & Stramentinoli, G. (1984). Age-related modification of dopaminergic and beta-adrenergic receptor system: restoration to normal activity by modifying membrane fluidity with S-adenosyl-l -methionine. Life Sciences, 34, 2029–2039.CrossRef
    5.Barcelo, H. A., Wiemeyer, J. C., Sagasta, C. L., Macias, M., & Barreira, J. C. (1990). Experimental osteoarthritis and its course when treated with S-adenosyl-l-methionine. Revista Clínica Española, 187, 74–78.
    6.Shiozaki, S., Shimizu, S., & Yamada, H. (1986). Production of S-adenosyl-l-methionine by Saccharomyces sake. Journal of Biotechnology, 4, 345–354.CrossRef
    7.Lee, S. W., Park, B. S., Choi, E. S., & Oh, M. K. (2010). Overexpression of ethionine resistance gene for maximaized production of S-adenosylmethionine in Saccharomyces cerevisiae sake kyokai No.6. Korean Journal of Chemical Engineering, 27, 587–589.CrossRef
    8.Thomas, D., & Surdin-Kerjan, Y. (1991). The synthesis of the two S-adenosyl- methionine synthetases is differently regulated in Saccharomyces cereviasiae. Molecular and General Genetics, 226, 224–232.CrossRef
    9.Cantoni, G. L. (1951). Methylation of nicotinamide with a soluble enzyme system from rat liver. Journal of Biological Chemistry, 189, 203–216.
    10.Markham, G. D., Hafner, E. W., Tabor, C. W., & Tabor, H. (1980). S-adenosyl-L-methionine synthetase from Escherichia coli. Journal of Biological Chemistry, 19(255), 9082–9092.
    11.He, J. Y., Deng, J. J., Zheng, Y. H., & Gu, J. (2006). A synergistic effect on the production of S-adenosyl-L-methionine in Pichia pastoris by knocking in of the S-adenosyl-L-methionine synthase and knocking out of cystathionine-beta-synthase. Journal of Biotechnology, 4(126), 519–527.CrossRef
    12.Hu, X. Q., Chu, J., Zhang, S. L., Zhuang, Y. P., Wang, Y. H., Zhu, S., Zhu, Z. G., & Yuan, Z. Y. (2007). A novel feeding strategy during the production phase for enhancing the enzymatic synthesis of S-adenosyl-L-methionine by methylotrophic Pichia pastoris. Enzyme and Microbial Technology, 40, 669–674.CrossRef
    13.Zhang, J. G., Wang, X. D., Zheng, Y., Fang, G. C., & Wei, D. Z. (2008). Enhancing yield of S-adenosylmethionine in Pichia pastoris by controlling NH4 + concentration. Bioprocess and Biosystems Engineering, 2(31), 63–67.CrossRef
    14.Hu, H., Qian, J. C., Chu, J., Wang, Y. H., Zhuang, Y. P., & Zhang, S. L. (2009). Optimization of L-methionine feeding strategy for improving S-adenosyl-L-methionine production by methionine adenosyltransferase overexpressed Pichia pastoris. Applied Microbiology and Biotechnology, 83, 1105–1114.CrossRef
    15.Cao, X. T., Yang, M. H., & Xia, Y. (2012). Strain improvement for enhanced production of S-adenosyl-L-methionine in Saccharomyces cerevisiae based on ethionine-resistance and SAM synthetase activity. Annals of Microbiology, 62, 1395–1402.CrossRef
    16.Huang, Y., Gou, X., Hu, H., Xu, Q., Lu, Y., & Cheng, J. (2012). Enhanced S-adenosyl-L-methionine production in Saccharomyces cerevisiae by spaceflight culture, overexpressing methionine adenosyltransferase and optimizing cultivation. Journal of Applied Microbiology, 112, 683–694.CrossRef
    17.Chan, S. Y., & Appling, D. R. (2003). Regulation of S-adensylmethionine levels in Saccharomyces cerevisiae. Journal of Biological Chemistry, 278, 43051–43059.CrossRef
    18.Liu, H., Lin, J. P., Wu, J. P., & Cen, P. L. (2002). Production of S-adenosyl-L-methionine using Saccharomyces cerevisiae by bioconversion of L-methionine. Chemical Reaction Engineering and Technology (China), 4(18), 310–314.
    19.Wang, Y., Shi, W. L., Liu, X. Y., Shen, Y., Bao, X. M., Bai, F. W., & Qu, Y. B. (2004). Establishment of a xylose metabolic pathway in an industrial strain of Saccharomyces cerevisiae. Biotechnology Letters, 11(26), 885–900.CrossRef
  • 作者单位:Weijun Zhao (1)
    Feng Shi (2)
    Baojian Hang (1)
    Lei Huang (1)
    Jin Cai (1)
    Zhinan Xu (1)

    1. Key Laboratory of Biomass Chemical Engineering (Ministry of Education), College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, China
    2. Shandong Institute for Food and Drug Control, Jinan, 250101, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Biochemistry
  • 出版者:Humana Press Inc.
  • ISSN:1559-0291
文摘
S-Adenosyl-l-methionine (SAM) plays important roles in trans-methylation, trans-sulfuration, and polyamine synthesis in all living cells, and it is also an effective cure for liver disease, depressive syndromes, and osteoarthritis. The increased demands of SAM in pharmaceuticals industry have aroused lots of attempts to improve its production. In this study, a multiple-copy integrative plasmid pYMIKP-SAM2 was introduced into the chromosome of wild-type Saccharomyces cerevisiae strain ZJU001 to construct the recombined strain R1-ZJU001. Further studies showed that the recombinant yeast exhibited higher enzymatic activity of methionine adenosyltransferase and improved its SAM biosynthesis. With a three-phase fed-batch strategy in 15-liter bench-top fermentor, 8.81 g/L SAM was achieved after 52 h cultivation of R1-ZJU001, about 27.1 % increase over its parent strain ZJU001, whereas the SAM content was also improved from 64.6 mg/g DCW to 91.0 mg/g DCW. Our results shall provide insights into the metabolic engineering of SAM pathway in yeast for improved productivity of SAM and subsequent industrial applications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700