Immunoreceptor TIGIT inhibits the cytotoxicity of human cytokine-induced killer cells by interacting with CD155
详细信息    查看全文
  • 作者:Baofu Zhang ; Weina Zhao ; Huizhong Li ; Yuanyuan Chen…
  • 关键词:TIGIT ; CD155 ; DNAM ; 1 ; CIK cells ; Immunotherapy
  • 刊名:Cancer Immunology, Immunotherapy
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:65
  • 期:3
  • 页码:305-314
  • 全文大小:1,786 KB
  • 参考文献:1.Schmidt-Wolf IG, Negrin RS, Kiem HP, Blume KG, Weissman IL (1991) Use of a SCID mouse/human lymphoma model to evaluate cytokine-induced killer cells with potent antitumor cell activity. J Exp Med 174(1):139–149CrossRef PubMed
    2.Mehta BA, Schmidt-Wolf IG, Weissman IL, Negrin RS (1995) Two pathways of exocytosis of cytoplasmic granule contents and target cell killing by cytokine-induced CD3 + CD56 + killer cells. Blood 86(9):3493–3499PubMed
    3.Jakel CE, Schmidt-Wolf IG (2014) An update on new adoptive immunotherapy strategies for solid tumors with cytokine-induced killer cells. Expert Opin Biol Ther 14(7):905–916. doi:10.​1517/​14712598.​2014.​900537 CrossRef PubMed
    4.Schmidt-Wolf IG, Lefterova P, Mehta BA, Fernandez LP, Huhn D, Blume KG, Weissman IL, Negrin RS (1993) Phenotypic characterization and identification of effector cells involved in tumor cell recognition of cytokine-induced killer cells. Exp Hematol 21(13):1673–1679PubMed
    5.Gutgemann S, Frank S, Strehl J, Schmidt-Wolf IG (2007) Cytokine-induced killer cells are type II natural killer T cells. Ger Med Sci 5:Doc07PubMed PubMedCentral
    6.Linn YC, Lau SK, Liu BH, Ng LH, Yong HX, Hui KM (2009) Characterization of the recognition and functional heterogeneity exhibited by cytokine-induced killer cell subsets against acute myeloid leukaemia target cell. Immunology 126(3):423–435. doi:10.​1111/​j.​1365-2567.​2008.​02910.​x CrossRef PubMed PubMedCentral
    7.Sangiolo D, Martinuzzi E, Todorovic M, Vitaggio K, Vallario A, Jordaney N, Carnevale-Schianca F, Capaldi A, Geuna M, Casorzo L, Nash RA, Aglietta M, Cignetti A (2008) Alloreactivity and anti-tumor activity segregate within two distinct subsets of cytokine-induced killer (CIK) cells: implications for their infusion across major HLA barriers. Int Immunol 20(7):841–848. doi:10.​1093/​intimm/​dxn042 CrossRef PubMed
    8.Schmidt-Wolf IG, Finke S, Trojaneck B, Denkena A, Lefterova P, Schwella N, Heuft HG, Prange G, Korte M, Takeya M, Dorbic T, Neubauer A, Wittig B, Huhn D (1999) Phase I clinical study applying autologous immunological effector cells transfected with the interleukin-2 gene in patients with metastatic renal cancer, colorectal cancer and lymphoma. Br J Cancer 81(6):1009–1016. doi:10.​1038/​sj.​bjc.​6690800 CrossRef PubMed PubMedCentral
    9.Shi M, Zhang B, Tang ZR, Lei ZY, Wang HF, Feng YY, Fan ZP, Xu DP, Wang FS (2004) Autologous cytokine-induced killer cell therapy in clinical trial phase I is safe in patients with primary hepatocellular carcinoma. World J Gastroenterol 10(8):1146–1151PubMed PubMedCentral
    10.Leemhuis T, Wells S, Scheffold C, Edinger M, Negrin RS (2005) A phase I trial of autologous cytokine-induced killer cells for the treatment of relapsed Hodgkin disease and non-Hodgkin lymphoma. Biol Blood Marrow Transplant 11(3):181–187. doi:10.​1016/​j.​bbmt.​2004.​11.​019 CrossRef PubMed
    11.Introna M, Borleri G, Conti E, Franceschetti M, Barbui AM, Broady R, Dander E, Gaipa G, D’Amico G, Biagi E, Parma M, Pogliani EM, Spinelli O, Baronciani D, Grassi A, Golay J, Barbui T, Biondi A, Rambaldi A (2007) Repeated infusions of donor-derived cytokine-induced killer cells in patients relapsing after allogeneic stem cell transplantation: a phase I study. Haematologica 92(7):952–959CrossRef PubMed
    12.Hui D, Qiang L, Jian W, Ti Z, Da-Lu K (2009) A randomized, controlled trial of postoperative adjuvant cytokine-induced killer cells immunotherapy after radical resection of hepatocellular carcinoma. Dig Liver Dis 41(1):36–41. doi:10.​1016/​j.​dld.​2008.​04.​007 CrossRef PubMed
    13.Zhong R, Teng J, Han B, Zhong H (2011) Dendritic cells combining with cytokine-induced killer cells synergize chemotherapy in patients with late-stage non-small cell lung cancer. Cancer Immunol Immunother 60(10):1497–1502. doi:10.​1007/​s00262-011-1060-0 CrossRef PubMed
    14.Liu L, Zhang W, Qi X, Li H, Yu J, Wei S, Hao X, Ren X (2012) Randomized study of autologous cytokine-induced killer cell immunotherapy in metastatic renal carcinoma. Clin Cancer Res 18(6):1751–1759. doi:10.​1158/​1078-0432.​CCR-11-2442 CrossRef PubMed
    15.Li R, Wang C, Liu L, Du C, Cao S, Yu J, Wang SE, Hao X, Ren X, Li H (2012) Autologous cytokine-induced killer cell immunotherapy in lung cancer: a phase II clinical study. Cancer Immunol Immunother 61(11):2125–2133. doi:10.​1007/​s00262-012-1260-2 CrossRef PubMed
    16.Shi L, Zhou Q, Wu J, Ji M, Li G, Jiang J, Wu C (2012) Efficacy of adjuvant immunotherapy with cytokine-induced killer cells in patients with locally advanced gastric cancer. Cancer Immunol Immunother 61(12):2251–2259. doi:10.​1007/​s00262-012-1289-2 CrossRef PubMed PubMedCentral
    17.Chung MJ, Park JY, Bang S, Park SW, Song SY (2014) Phase II clinical trial of ex vivo-expanded cytokine-induced killer cells therapy in advanced pancreatic cancer. Cancer Immunol Immunother 63(9):939–946. doi:10.​1007/​s00262-014-1566-3 CrossRef PubMed
    18.Olioso P, Giancola R, Di Riti M, Contento A, Accorsi P, Iacone A (2009) Immunotherapy with cytokine induced killer cells in solid and hematopoietic tumours: a pilot clinical trial. Hematol Oncol 27(3):130–139. doi:10.​1002/​hon.​886 CrossRef PubMed
    19.Linn YC, Yong HX, Niam M, Lim TJ, Chu S, Choong A, Chuah C, Goh YT, Hwang W, Loh Y, Ng HJ, Suck G, Chan M, Koh M (2012) A phase I/II clinical trial of autologous cytokine-induced killer cells as adjuvant immunotherapy for acute and chronic myeloid leukemia in clinical remission. Cytotherapy 14(7):851–859. doi:10.​3109/​14653249.​2012.​694419 CrossRef PubMed
    20.Yu X, Harden K, Gonzalez LC, Francesco M, Chiang E, Irving B, Tom I, Ivelja S, Refino CJ, Clark H, Eaton D, Grogan JL (2009) The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells. Nat Immunol 10(1):48–57. doi:10.​1038/​ni.​1674 CrossRef PubMed
    21.Joller N, Lozano E, Burkett PR, Patel B, Xiao S, Zhu C, Xia J, Tan TG, Sefik E, Yajnik V, Sharpe AH, Quintana FJ, Mathis D, Benoist C, Hafler DA, Kuchroo VK (2014) Treg cells expressing the coinhibitory molecule TIGIT selectively inhibit proinflammatory Th1 and Th17 cell responses. Immunity 40(4):569–581. doi:10.​1016/​j.​immuni.​2014.​02.​012 CrossRef PubMed PubMedCentral
    22.Li M, Xia P, Du Y, Liu S, Huang G, Chen J, Zhang H, Hou N, Cheng X, Zhou L, Li P, Yang X, Fan Z (2014) T-cell immunoglobulin and ITIM domain (TIGIT) receptor/poliovirus receptor (PVR) ligand engagement suppresses interferon-gamma production of natural killer cells via beta-arrestin 2-mediated negative signaling. J Biol Chem 289(25):17647–17657. doi:10.​1074/​jbc.​M114.​572420 CrossRef PubMed PubMedCentral
    23.Zhang T, Wang J, Zhou X, Liang R, Bai Q, Yang L, Gu H, Gao G, Dong B, Zhu H, Chen X (2014) Increased expression of TIGIT on CD4 + T cells ameliorates immune-mediated bone marrow failure of aplastic anemia. J Cell Biochem 115(11):1918–1927. doi:10.​1002/​jcb.​24862 PubMed
    24.Stanietsky N, Simic H, Arapovic J, Toporik A, Levy O, Novik A, Levine Z, Beiman M, Dassa L, Achdout H, Stern-Ginossar N, Tsukerman P, Jonjic S, Mandelboim O (2009) The interaction of TIGIT with PVR and PVRL2 inhibits human NK cell cytotoxicity. Proc Natl Acad Sci USA 106(42):17858–17863. doi:10.​1073/​pnas.​0903474106 CrossRef PubMed PubMedCentral
    25.Levin SD, Taft DW, Brandt CS, Bucher C, Howard ED, Chadwick EM, Johnston J, Hammond A, Bontadelli K, Ardourel D, Hebb L, Wolf A, Bukowski TR, Rixon MW, Kuijper JL, Ostrander CD, West JW, Bilsborough J, Fox B, Gao Z, Xu W, Ramsdell F, Blazar BR, Lewis KE (2011) Vstm3 is a member of the CD28 family and an important modulator of T-cell function. Eur J Immunol 41(4):902–915. doi:10.​1002/​eji.​201041136 CrossRef PubMed PubMedCentral
    26.Stengel KF, Harden-Bowles K, Yu X, Rouge L, Yin J, Comps-Agrar L, Wiesmann C, Bazan JF, Eaton DL, Grogan JL (2012) Structure of TIGIT immunoreceptor bound to poliovirus receptor reveals a cell-cell adhesion and signaling mechanism that requires cis-trans receptor clustering. Proc Natl Acad Sci USA 109(14):5399–5404. doi:10.​1073/​pnas.​1120606109 CrossRef PubMed PubMedCentral
    27.Joller N, Hafler JP, Brynedal B, Kassam N, Spoerl S, Levin SD, Sharpe AH, Kuchroo VK (2011) Cutting edge: TIGIT has T cell-intrinsic inhibitory functions. J Immunol 186(3):1338–1342. doi:10.​4049/​jimmunol.​1003081 CrossRef PubMed PubMedCentral
    28.Lozano E, Dominguez-Villar M, Kuchroo V, Hafler DA (2012) The TIGIT/CD226 axis regulates human T cell function. J Immunol 188(8):3869–3875. doi:10.​4049/​jimmunol.​1103627 CrossRef PubMed PubMedCentral
    29.Foks AC, Ran IA, Frodermann V, Bot I, van Santbrink PJ, Kuiper J, van Puijvelde GH (2013) Agonistic anti-TIGIT treatment inhibits T cell responses in LDLr deficient mice without affecting atherosclerotic lesion development. PLoS One 8(12):e83134. doi:10.​1371/​journal.​pone.​0083134 CrossRef PubMed PubMedCentral
    30.Stanietsky N, Rovis TL, Glasner A, Seidel E, Tsukerman P, Yamin R, Enk J, Jonjic S, Mandelboim O (2013) Mouse TIGIT inhibits NK-cell cytotoxicity upon interaction with PVR. Eur J Immunol 43(8):2138–2150. doi:10.​1002/​eji.​201243072 CrossRef PubMed PubMedCentral
    31.de Andrade LF, Smyth MJ, Martinet L (2014) DNAM-1 control of natural killer cells functions through nectin and nectin-like proteins. Immunol Cell Biol 92(3):237–244. doi:10.​1038/​icb.​2013.​95 CrossRef PubMed
    32.Jiang G, Zhang K, Jiang AJ, Xu D, Xin Y, Wei ZP, Zheng JN, Liu YQ (2012) A conditionally replicating adenovirus carrying interleukin-24 sensitizes melanoma cells to radiotherapy via apoptosis. Mol Oncol 6(4):383–391. doi:10.​1016/​j.​molonc.​2012.​05.​001 CrossRef PubMed
    33.Zhang BF, Liu JJ, Pei DS, Yang ZX, Di JH, Chen FF, Li HZ, Xu W, Wu YP, Zheng JN (2011) Potent antitumor effect elicited by RGD-mda-7, an mda-7/IL-24 mutant, via targeting the integrin receptor of tumor cells. Cancer Biother Radiopharm 26(5):647–655. doi:10.​1089/​cbr.​2011.​0984 CrossRef PubMed
    34.Sloan KE, Stewart JK, Treloar AF, Matthews RT, Jay DG (2005) CD155/PVR enhances glioma cell dispersal by regulating adhesion signaling and focal adhesion dynamics. Cancer Res 65(23):10930–10937. doi:10.​1158/​0008-5472.​CAN-05-1890 CrossRef PubMed
    35.Peggs KS, Quezada SA, Korman AJ, Allison JP (2006) Principles and use of anti-CTLA4 antibody in human cancer immunotherapy. Curr Opin Immunol 18(2):206–213. doi:10.​1016/​j.​coi.​2006.​01.​011 CrossRef PubMed
    36.Kwon ED, Drake CG, Scher HI, Fizazi K, Bossi A, van den Eertwegh AJ, Krainer M, Houede N, Santos R, Mahammedi H, Ng S, Maio M, Franke FA, Sundar S, Agarwal N, Bergman AM, Ciuleanu TE, Korbenfeld E, Sengelov L, Hansen S, Logothetis C, Beer TM, McHenry MB, Gagnier P, Liu D, Gerritsen WR (2014) Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): a multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol 15(7):700–712. doi:10.​1016/​S1470-2045(14)70189-5 CrossRef PubMed PubMedCentral
    37.Tarhini A (2013) Immune-mediated adverse events associated with ipilimumab CTLA-4 blockade therapy: the underlying mechanisms and clinical management. Scientifica 2013:857519. doi:10.​1155/​2013/​857519 CrossRef PubMed PubMedCentral
    38.Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM, Segal NH, Ariyan CE, Gordon RA, Reed K, Burke MM, Caldwell A, Kronenberg SA, Agunwamba BU, Zhang X, Lowy I, Inzunza HD, Feely W, Horak CE, Hong Q, Korman AJ, Wigginton JM, Gupta A, Sznol M (2013) Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med 369(2):122–133. doi:10.​1056/​NEJMoa1302369 CrossRef PubMed
    39.Masson D, Jarry A, Baury B, Blanchardie P, Laboisse C, Lustenberger P, Denis MG (2001) Overexpression of the CD155 gene in human colorectal carcinoma. Gut 49(2):236–240CrossRef PubMed PubMedCentral
    40.Bottino C, Castriconi R, Pende D, Rivera P, Nanni M, Carnemolla B, Cantoni C, Grassi J, Marcenaro S, Reymond N, Vitale M, Moretta L, Lopez M, Moretta A (2003) Identification of PVR (CD155) and Nectin-2 (CD112) as cell surface ligands for the human DNAM-1 (CD226) activating molecule. J Exp Med 198(4):557–567. doi:10.​1084/​jem.​20030788 CrossRef PubMed PubMedCentral
    41.Castriconi R, Dondero A, Corrias MV, Lanino E, Pende D, Moretta L, Bottino C, Moretta A (2004) Natural killer cell-mediated killing of freshly isolated neuroblastoma cells: critical role of DNAX accessory molecule-1-poliovirus receptor interaction. Cancer Res 64(24):9180–9184. doi:10.​1158/​0008-5472.​CAN-04-2682 CrossRef PubMed
    42.Chan CJ, Andrews DM, McLaughlin NM, Yagita H, Gilfillan S, Colonna M, Smyth MJ (2010) DNAM-1/CD155 interactions promote cytokine and NK cell-mediated suppression of poorly immunogenic melanoma metastases. J Immunol 184(2):902–911. doi:10.​4049/​jimmunol.​0903225 CrossRef PubMed
    43.Atsumi S, Matsumine A, Toyoda H, Niimi R, Iino T, Sudo A (2013) Prognostic significance of CD155 mRNA expression in soft tissue sarcomas. Oncol Lett 5(6):1771–1776. doi:10.​3892/​ol.​2013.​1280 PubMed PubMedCentral
  • 作者单位:Baofu Zhang (1) (2)
    Weina Zhao (2)
    Huizhong Li (1) (2)
    Yuanyuan Chen (2)
    Hui Tian (2)
    Liantao Li (1) (2)
    Longzhen Zhang (1) (2)
    Chao Gao (1) (2)
    Junnian Zheng (1) (2)

    1. Cancer Center, The Affiliated Hospital of Xuzhou Medical College, 89 West Huai-hai Road, Xuzhou, 221006, Jiangsu, China
    2. Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, Xuzhou, 221002, Jiangsu, China
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Cancer Research
    Immunology
    Oncology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0851
文摘
T cell Ig and ITIM domain (TIGIT) is a newly identified inhibitory receptor expressed on T and natural killer (NK) cells. Cytokine-induced killer (CIK) cells express CD3 and CD56 molecules, and share functional properties with both NK and T cells. However, it remains unknown whether TIGIT is expressed in CIK cells. Here, we show that TIGIT is expressed by CIK cells and interacts with CD155. By blocking TIGIT using an anti-TIGIT functional antibody, we demonstrate that CIK cells display increased proliferation; higher cytotoxic targeting of tumor cells expressing CD155; and higher expression of interferon-γ (IFN-γ), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α). Furthermore, increases in IFN-γ and cytotoxicity by blockade of TIGIT were reduced by blocking DNAX accessory molecule-1 (DNAM-1) signaling, implying that TIGIT exerts immunosuppressive effects by competing with DNAM-1 for the same ligand, CD155. Our results provide evidence that blockade of TIGIT may be a novel strategy to improve the cytotoxic activity of CIK cells.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700