Structural basis of valmerins as dual inhibitors of GSK3β/CDK5
详细信息    查看全文
  • 作者:Xiaolong Li (1)
    Xiaowei Wang (2)
    Zibin Tian (2)
    Houling Zhao (1)
    Da Liang (1)
    Weisong Li (1)
    Yujin Qiu (1)
    Shaoyong Lu (3)
  • 关键词:GSK3β/CDK5 ; MD simulation ; Molecular docking ; MM ; PBSA ; PCA
  • 刊名:Journal of Molecular Modeling
  • 出版年:2014
  • 出版时间:September 2014
  • 年:2014
  • 卷:20
  • 期:9
  • 全文大小:2,522 KB
  • 参考文献:1. Hanks SK, Quinn AM, Hunter T (1988) The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241:42-2 CrossRef
    2. Meharena HS, Chang P, Keshwani MM, Oruganty K, Nene AK, Kannan N, Taylor SS, Kornev AP (2013) Deciphering the structural basis of eukaryotic protein kinase regulation. PLoS Biol 11:e1001680 CrossRef
    3. Krebs EG, Beavo JA (1979) Phosphorylation-dephosphorylation of enzymes. Ann Rev Biochem 48:923-59 CrossRef
    4. Levitzki A (2003) Protein kinase inhibitors as a therapeutic modality. Acc Chem Res 36:462-69 CrossRef
    5. Nussinov R, Tsai CJ (2012) The different ways through which specificity works in orthosteric and allosteric drugs. Curr Pharm Des 18:1311-316 CrossRef
    6. Gorre ME, Mohammed M, Ellwood K, Hsu N, Paguette R, Rao PN, Sawyers CL (2001) Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 293:876-80 CrossRef
    7. Gajiwala KS, Wu JC, Christensen J, Deshmukh GD, Diehl W, Dinitto JP, English JM, Greig MJ, He YA, Jacques SL, Lunney EA, McTigue M, Molina D, Quenzer T, Wells PA, Yu X, Zhang Y, Zou A, Emmett MR, Marshall AG, Zhang HM, Demetri GD (2009) KIT kinase mutants show unique mechanisms of drug resistance to imatinib and sunitinib in gastrointestinal stromal tumor patients. Proc Natl Acad Sci U S A 106:1542-547 CrossRef
    8. Bougherara H, Subra F, Crepin R, Tauc P, Auclair C, Poul MA (2009) The aberrant localization of oncogenic kit tyrosine kinase receptor mutants is reversed on specific inhibitory treatment. Mol Cancer Res 7:1525-533 CrossRef
    9. Petrelli A, Giordano S (2008) From single- to multi-target drugs in cancer therapy: when aspecifity becomes an advantage. Curr Med Chem 15:422-32 CrossRef
    10. Delehouze C, Godl K, Loaec N, Bruyere C, Desban N, Oumata N, Galons H, Roumeliotis TI, Giannopoulou EG, Grenet J, Twitchell D, Lahti J, Mouchet N, Galibert MD, Garbis SD, Meijer L (2013) CDK/CK1 inhibits roscovitine and CR8 downregulate amplified MYCN in neuroblastoma cells. Oncogene 2013, doi:10.1038/onc.2013.513 .
    11. Zhang C, Ibrahim PN, Zhang J, Burton EA, Habets G, Zhang Y, Powell B, West BL, Matusow B, Tsang G, Shellooe R, Carias H, Nguyen H, Marimuthu A, Zhang KYJ, Oh A, Bremer R, Hurt CR, Artis DR, Wu G, Nespi M, Spevak W, Lin P, Nolop K, Hirth P, Tesch GH, Bollag G (2013) Design and pharmacology of a highly specific dual FMS and KIT kinase inhibitor. Proc Natl Acad Sci U S A 110:5689-694 CrossRef
    12. Adhami VM, Syed DN, Khan N, Mukhtar H (2012) Dietary falvonoid fisetin: a novel dual inhibitor of PI3K/Akt and mTOR for prostate cancer management. Biochem Pharmacol 84:1277-281 CrossRef
    13. Liu L, Gaboriaud N, Vougogianopoulou K, Tian Y, Wu J, Wen W, Skaltsounis L, Jove R (2014) MLS-2384, a new 6-bromoindirubin derivative with dual JAK/Src kinase inhibitory activity, suppresses growth of diverse cancer cells. Cancer Biol Ther 15:1- CrossRef
    14. Ali A, Hoeflich KP, Woodgett JR (2001) Glycogen synthase kinase-3, properties, functions, and regulation. Chem Rev 101:2527-540 CrossRef
    15. Tsai LH, Dhavan R (2001) A decade of CDK5. Nat Rev Mol Cell Biol 2:749-59 CrossRef
    16. Boulahjar R, Ouach A, Matteo C, Bourg S, Ravache M, le Guevel R, Marionneau S, Oullier T, Lozach O, Meijer L, Guguen-Guillouzo C, Lazar S, Akssira M, Troin Y, Guillaumet G, Routier S (2012) Novel tetrohydropyrido[1,2- / a]isoindolone derivatives (valmerins): potent cyclin-dependent kinase/glycogen synthase kinase 3 inhibitors with antiproliferative activities and antitumor effects in human tumor xenografts. J Med Chem 55:9589-606 CrossRef
    17. Meijer L, Skaltsounis AL, Magiatis P, Polychronopoulos P, Knockaert M, Leost M, Ryan XP, Vonica CA, Brivanlou A, Dajani R, Crovace C, Tarricone C, Musacchio A, Roe SM, Pearl L, Greengard P (2003) GSK3-selective inhibitors derived from Tyrian purple indirubins. Chem Biol 10:1255-266 CrossRef
    18. Mapelli M, Massimilinao L, Crovace C, Seeliger MA, Tsai LH, Meijer L, Musacchio A (2005) Mechanism of CDK5/p25 binding by CDK inhibitors. J Med Chem 48:671-79 CrossRef
    19. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem 30:2785-791 CrossRef
    20. Lu SY, Jiang YJ, Lv J, Wu TX, Yu QS, Zhu WL (2010) Molecular docking and molecular dynamics studies of GPR40 receptor-agonist interactions. J Mol Graph Model 28:766-74 CrossRef
    21. Lu SY, Jiang YJ, Zou JW, Wu TX (2011) Molecular modeling and molecular dynamics simulation studies on pyrrolopyrimidine-based α-helix mimetic as dual inhibitors of MDM2 and MDMX. J Mol Graph Model 30:167-78 CrossRef
    22. Lu SY, Jiang YJ, Lv J, Zou JW, Wu TX (2011) Role of bridging water molecules in GSK3β-inhibitor complexes: insights from QM/MM, MD, and molecular docking studies. J Comput Chem 32:1907-918 CrossRef
    23. Lu S, Huang W, Li X, Huang Z, Liu X, Chen Y, Shi T, Zhang J (2012) Insights into the role of magnesium in / myo-inositol monophosphatase: metal mechanism, substrate binding, and lithium therapy. J Chem Inf Model 52:2398-409 CrossRef
    24. Case DA, Darden TA, Cheatham TE III, Simmerling CL, Wang J, Duke RE, Luo R, Walker RC, Zhang W, Merz KM, Roberts BP, Wang B, Hayik S, Roitberg A, Seabra G, Kolossvary I, Wong KF, Paesani F, Vanicek J, Liu J, Wu X, Brozell SR, Steinbrecher T, Gohlke H, Cai Q, Ye X, Wang J, Hsieh MJ, Cui G, Roe DR, Mathews DH, Seetin MG, Sagui C, Babin V, Luchko T, Gusarov S, Kovalenko A, Kollman PA (2010) AMBER 11. University of California, San Francisco
    25. Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G, Zhang W, Yang R, Cieplak P, Luo R, Lee T (2003) A point-charge force field for molecular mechanics simulations of proteins. J Comput Chem 24:1999-012 CrossRef
    26. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25:1157-174 CrossRef
    27. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Meuuucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta Jr. JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers JJHE, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian, Inc., Wallingford,CT
    28. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of single potential function for simulating liquid water. J Chem Phys 79:926-35
    29. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N log(N) method for Ewald sums in large systems. J Chem Phys 98:10089-0094
    30. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327-41 CrossRef
    31. Wu X, Brooks BR (2003) Self-guided Langevin dynamics simulation method. Chem Phys Lett 381:512-18
    32. Hou T, Wang J, Li Y, Wang W (2011) Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based molecular dynamics simulations. J Chem Inf Model 51:69-2 CrossRef
    33. Yang Y, Shen Y, Liu H, Yao X (2011) Molecular dynamics simulation and free energy calculation studies of the binding mechanism of allosteric inhibitors with p38α MAP kinase. J Chem Inf Model 51:3235-246 CrossRef
    34. Lu SY, Jiang YJ, Zou JW, Wu TX (2011) Molecular modeling and molecular dynamics studies of the GSK3β/ATP/substrate complex: understanding the unique P-- primed phosphorylation specificity for GSK3β substrates. J Chem Inf Model 51:1025-036
    35. Wang Y, Zhu GF, Ren SY, Han YG, Luo Y, Du L (2013) Insight into the structural stability of wild type and mutants of the tobacco etch virus protease with molecular dynamics simulation. J Mol Model 19:4865-875 CrossRef
    36. Shao J, Tanner SW, Thompson N, Cheatham TE III (2007) Clustering molecular dynamics trajectories: 1. Characterizing the performance of different clustering algorithms. J Chem Theory Comput 3:2312-334 CrossRef
    37. Zhang J, Xu Y, Shen J, Luo X, Chen J, Chen K, Zhu W, Jiang H (2005) Dynamic mechanism for the autophosphorylation of CheA histidine kinase: molecular dynamics simulations. J Am Chem Soc 127:11709-1719 CrossRef
    38. Papaleo E, Lindorff-Larsen K, De Gioia L (2012) Paths of long-range communication in the E2 enzymes of family 3: a molecular dynamics investigation. Phys Chem Chem Phys 14:12515-2525 CrossRef
    39. Bader RFW (1990) Atoms in Molecules: a quantum theory. Clarendon Press, Oxford
    40. Biegler-Konig F (1998-000) AIM 2000, version 1.0. University of Applied Sciences, Bielefeld
    41. Wang W, Cao X, Zhu X, Gu Y (2013) Molecular dynamics simulations give insight into the mechanism of binding between 2-aminothiazole inhibitors and CDK5. J Mol Model 19:2635-645 CrossRef
    42. Wallace AC, Laskowski RA, Thornton JM (1995) LIGPLOT: a program to generate chematic diagrams of protein-ligand interactions. Protein Eng 8:127-34 CrossRef
    43. Lu SY, Jiang YJ, Zhou P, Zou JW, Wu TX (2010) Geometric characteristic and energy landscapes of halogen-water-hydrogen bridges at protein-ligand interfaces. Chem Phys Lett 485:348-53
    44. Lu SY, Jiang YJ, Zou JW, Wu TX (2012) Effect of double mutations K214/A-E215/Q of FRATide on GSK3β: insights from molecular dynamics simulation and normal mode analysis. Amino Acids 43:267-77 CrossRef
    45. Lu S, Jiang Y, Lv J, Zou J, Wu T (2011) Mechanism of kinase inactivation and nonbinding of FRATide to GSK3β due to K85M mutation: molecular dynamics simulation and normal mode analysis. Biopolymers 95:669-81 CrossRef
    46. Hyeon C, Jennings PA, Adams JA, Onuchic JN (2009) Ligand-induced global transitions in the catalytic domain of protein kinase A. Proc Natl Acad Sci U S A 106:3023-028 CrossRef
    47. Masterson LR, Shi L, Metcalfe E, Gao J, Taylor SS, Veglia G (2011) Dynamically committed, uncommitted, and quenched states encoded in protein kinase A revealed by NMR spectroscopy. Proc Natl Acad Sci U S A 108:6969-974 CrossRef
    48. Peters JH, de Groot BL (2012) Ubiquitin dynamics in complexes reveal molecular recognition mechanisms beyond induced fit and conformational selection. PLoS Comput Biol 8:e1002704 CrossRef
    49. Csermely P, Palotai R, Nussinov R (2010) Induced fit, conformational selection and independent dynamic segments: an extended view of binding events. Trends Biochem Sci 35:539-46 CrossRef
    50. Boehr DD, Nussinov R, Wright PE (2009) The role of dynamic conformational ensemble in biomolecular recognition. Nat Chem Biol 5:789-96 CrossRef
  • 作者单位:Xiaolong Li (1)
    Xiaowei Wang (2)
    Zibin Tian (2)
    Houling Zhao (1)
    Da Liang (1)
    Weisong Li (1)
    Yujin Qiu (1)
    Shaoyong Lu (3)

    1. Depatment of Spinal Surgery, Affiliated Hospital of Weifang Medical University, Weifang, 261000, China
    2. Department of Gastroenterology, Affiliated Hospital of Medical College, Qingdao University, Qingdao, 266003, China
    3. Medicinal Bioinformatics Center, School of Medicine, Shanghai JiaoTong University, Shanghai, 200025, China
  • ISSN:0948-5023
文摘
Development of multi-target drugs is becoming increasingly attractive in the repertoire of protein kinase inhibitors discovery. In this study, we carried out molecular docking, molecular dynamics simulations, molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) binding free energy calculations, principal component analysis (PCA), and dynamical cross-correlation matrices (DCCM) to dissect the molecular mechanism for the valmerin-19 acting as a dual inhibitor for glycogen synthase kinase 3β (GSK3β) and cyclin-dependent kinase 5 (CDK5). Detailed MM-PBSA calculations revealed that the binding free energies of the valmerin-19 to GSK3β/CDK5 were calculated to be ?2.60?±-.28?kcal mol-1 and ?1.85?±-.54?kcal mol-1, respectively, indicating that valmerin-19 has the potential to act as a dual inhibitor of GSK3β/CDK5. The analyses of PCA and DCCM results unraveled that binding of the valmerin-19 reduced the conformational dynamics of GSK3β/CDK5 and the valmerin-19 bound to GSK3β/CDK5 might occur mostly through a conformational selection mechanism. This study may be helpful for the future design of novel and potent dual GSK3β/CDK5 inhibitors.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700