Cellulase-assisted refining of bleached softwood kraft pulp for making water vapor barrier and grease-resistant paper
详细信息    查看全文
  • 作者:Peng Lu ; Weiwei Zhang ; Man He ; Yajing Yan ; Huining Xiao
  • 关键词:Cellulase hydrolysis ; Refining ; Water vapor barrier ; Grease resistance
  • 刊名:Cellulose
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:23
  • 期:1
  • 页码:891-900
  • 全文大小:1,895 KB
  • 参考文献:Andersson C (2008) New ways to enhance the functionality of paperboard by surface treatment—a review. Packag Technol Sci 21(6):339–373CrossRef
    Aulin C, Gallstedt M, Lindström T (2010) Oxygen and oil barrier properties of microfibrillated cellulose film and coating. Cellulose 17(3):559–574CrossRef
    Banavath HN, Bhardwaj NK, Ray AK (2011) A comparative study of the effect of refining on charge of various pulps. Bioresour Technol 102(6):4544–4551CrossRef
    Bubner P, Plank H, Nidetzky B (2013) Visualizing cellulase activity. Biotechnol Bioeng 110(6):1529–1549CrossRef
    Chevalier-Billosta V, Joseleau JP, Cochaux A et al (2007) Tying together the ultrastructural modifications of wood fibre induced by pulping processes with the mechanical properties of paper. Cellulose 14(2):141–152CrossRef
    Chinga-Carrasco G, Kuznetsova N, Garaeva M et al (2012) Bleached and unbleached MFC nanobarriers: properties and hydrophobisation with hexamethyldisilazane. J Nanopart Res 14:1280CrossRef
    Fardim P, Duran N (2003) Modification of fibre surfaces during pulping and refining as analysed by SEM, XPS and ToF-SIMS. Colloid Surf A 223(1–3):263–276CrossRef
    Fardim P, Gustafsson J, von Schoultz S et al (2005) Extractives on fiber surfaces investigated by XPS, ToF-SIMS and AFM. Colloid Surf A 255(1–3):91–103CrossRef
    Fernández-Fernández M, Sanromán MA, Moldes D (2014) Potential of laccase for modification of Eucalyptus globulus wood: a XPS study. Wood Sci Technol 48:151–160CrossRef
    Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10:162–165CrossRef
    Ganner T, Bubner P, Eibinger M et al (2012) Dissecting and reconstructing synergism in situ visualization of cooperativity among cellulases. J Biol Chem 287(52):43215–43222CrossRef
    Garcia O, Torres A, Colom J et al (2002) Effect of cellulase-assisted refining on the properties of dried and never-dried eucalyptus pulp. Cellulose 9(2):115–125CrossRef
    Gil N, Gil C, Amaral ME et al (2009) Use of enzymes to improve the refining of a bleached Eucalyptus globulus kraft pulp. Biochem Eng J 46(2):89–95CrossRef
    Gustafsson J, Ciovica L, Peltonen J (2003) The ultrastructure of spruce kraft pulps studied by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). Polymer 44:661–670CrossRef
    Hirvikorpi T, Vaha-Nissi M, Harlin A et al (2010) Comparison of some coating techniques to fabricate barrier layers on packaging materials. Thin Solid Films 518(19):5463–5466CrossRef
    Hult EL, Iotti M, Lenes M (2010) Efficient approach to high barrier packaging using microfibrillar cellulose and shellac. Cellulose 17(3):575–586CrossRef
    Khwaldia K, Arab-Tehrany E, Desobry S (2010) Biopolymer coatings on paper packaging materials. Compr Rev Food Sci F 9(1):82–91CrossRef
    Laine J, Stenius P, Carlsson G, Ström G (1994) Surface characterization of unbleached kraft pulps by means of ESCA. Cellulose 1:145–160CrossRef
    Lecourt M, Sigoillot JC, Petit-Conil M (2010) Cellulase-assisted refining of chemical pulps: impact of enzymatic charge and refining intensity on energy consumption and pulp quality. Process Biochem 45(8):1274–1278CrossRef
    Liu H, Fu SY, Zhu JY et al (2009) Visualization of enzymatic hydrolysis of cellulose using AFM phase imaging. Enzyme Microb Technol 45(4):274–281CrossRef
    Maran JP, Sivakumar V, Sridhar R et al (2013) Development of model for barrier and optical properties of tapioca starch based edible films. Carbohydr Polym 92(2):1335–1347CrossRef
    Mou HY, Iamazaki E, Zhan HY et al (2013) Advanced studies on the topochemistry of softwood fibres in low-consistency refining as analyzed by FE-SEM, XPS, and ToF-SIMS. Bioresources 8(2):2325–2336CrossRef
    Österberg M, Schmidt U, Jääskeläinen AS (2006) Combining confocal Raman spectroscopy and atomic force microscopy to study wood extractives on cellulose surfaces. Colloid Surf A 291(1–3):197–201CrossRef
    Raheem D (2012) Application of plastics and paper as food packaging materials—an overview. Emir J Food Agric 25(3):177–188CrossRef
    Roberts RJ (2004) Liquid penetration into paper. Dissertation, Australian National University
    Simola J, Malkavaara P, Alén R et al (2000) Scanning probe microscopy of pine and birch kraft pulp fibres. Polymer 41:2121–2126CrossRef
    Syverud K, Stenius P (2009) Strength and barrier properties of MFC films. Cellulose 16(1):75–85CrossRef
    Trezza T, Vergano P (1994) Grease resistance of corn zein coated paper. J Food Sci 59(4):912–915CrossRef
    Wang JP, Quirk A, Lipkowski J et al (2013) Direct in situ observation of synergism between cellulolytic enzymes during the biodegradation of crystalline cellulose fibers. Langmuir 29(48):14997–15005CrossRef
    Yuliarti O, Matia-Merino L, Goh KK et al (2011) Effect of Celluclast 1.5 L on the physicochemical characterization of gold kiwifruit pectin. Int J Mol Sci 12(10):6407–6417CrossRef
    Zhang WW, Xiao HN, Qian LY (2014) Enhanced water vapour barrier and grease resistance of paper bilayer-coated with chitosan and beeswax. Carbohydr Polym 101:401–406CrossRef
  • 作者单位:Peng Lu (1)
    Weiwei Zhang (1) (2)
    Man He (1) (3)
    Yajing Yan (4)
    Huining Xiao (1)

    1. Department of Chemical Engineering and Limerick Pulp and Paper Centre, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
    2. Institute of New Energy and New Materials, South China Agricultural University, Guangzhou, 510642, China
    3. School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
    4. School of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Bioorganic Chemistry
    Physical Chemistry
    Organic Chemistry
    Polymer Sciences
  • 出版者:Springer Netherlands
  • ISSN:1572-882X
文摘
The effect of cellulase pretreatment of bleached softwood kraft fiber before laboratory refining on the water vapor barrier and grease resistance properties of handsheets was investigated in this work. In contrast to no cellulase pretreatment, cellulase pretreatment at 0.5 filter paper units (FPU) combined with refining for 7500 revolutions was effective in reducing the water vapor transmission rate (WVTR, 50 % RH and 23 °C) of the paper by 83 % and achieving 100 % grease resistance over a 24-h test period. After cellulase pretreatment, the fiber morphology and hydrophobicity changed dramatically as a function of refining intensity. The role of cellulase pretreatment in reducing the WVTR and grease-stained areas was revealed on morphological observation by scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, as well as water contact angle testing. Keywords Cellulase hydrolysis Refining Water vapor barrier Grease resistance

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700