Response of Heat-Shock Protein (HSP) Genes to Temperature and Salinity Stress in the Antarctic Psychrotrophic Bacterium Psychrobacter sp. G
详细信息    查看全文
  • 作者:Shuai Che ; Weizhi Song ; Xuezheng Lin
  • 刊名:Current Microbiology
  • 出版年:2013
  • 出版时间:November 2013
  • 年:2013
  • 卷:67
  • 期:5
  • 页码:601-608
  • 全文大小:430KB
  • 参考文献:1. Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible WR (2005) Genome-wide identification and testing of superior reference genes for transcript normalization in / Arabidopsis. Plant Physiol 139(1):5-7 CrossRef
    2. Dheda K, Huggett JF, Bustin SA, Johnson MA, Rook G, Zumla A (2004) Validation of housekeeping genes for normalizing RNA expression in real-time PCR. Biotechniques 37(1):112-19
    3. Feder ME, Hofmann GE (1999) Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol 61:243-82 CrossRef
    4. Gamer J, Bujard H, Bukau B (1992) Physical interaction between heat shock proteins DnaK, DnaJ, and GrpE and the bacterial heat shock transcription factor σ32. Cell 69(5):833-42 CrossRef
    5. Gething MJ (1997) Guidebook to molecular chaperones and protein folding catalysts. Oxford University Press, Oxford
    6. Jana B, Panja S, Saha S, Basu T (2009) Mechanism of protonophores-mediated induction of heat-shock response in / Escherichia coli. BMC Microbiol 9:20 CrossRef
    7. Jobin MP, Delmas F, Garmyn D, Diviès C, Guzzo J (1997) Molecular characterization of the gene encoding an 18-kilodalton small heat shock protein associated with the membrane of / Leuconostoc oenos. Appl Environ Microbiol 63(2):609-14
    8. Kilstrup M, Jacobsen S, Hammer K, Vogensen FK (1997) Induction of heat shock proteins DnaK, GroEL, and GroES by salt stress in / Lactococcus lactis. Appl Environ Microbiol 63(5):1826-837
    9. Korber P, Zander T, Herschlag D, Bardwell JC (1999) A new heat shock protein that binds nucleic acids. J Biol Chem 274(1):249-56 CrossRef
    10. Korber P, Stahl JM, Nierhaus KH, Bardwell JC (2000) Hsp15: a ribosome-associated heat shock protein. EMBO J 19(4):741-48 CrossRef
    11. Kumar S, Nei M, Dudley J, Tamura K (2008) MEGA: a biologistcentric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9(4):299-06 CrossRef
    12. Liberek K, Georgopoulos C (1993) Autoregulation of the / Escherichia coli heat shock response by the DnaK and DnaJ heat shock proteins. Proc Natl Acad Sci USA 90(23):11019-1023 CrossRef
    13. Lin XZ, Cui SS, Xu GY, Wang S, Du N, Shen JH (2010) Cloning and heterologous expression of two cold-active lipases from the Antarctic bacterium / Psychrobacter sp. G. Polar Res 29:421-29 CrossRef
    14. Lipinska B, King J, Ang D, Georgopolous C (1988) Sequence analysis and transcriptional regulation of the / Escherichia coli GrpE gene, encoding a heat shock protein. Nucleic Acids Res 16(15):7545-562 CrossRef
    15. Liu S, Zhang P, Cong B, Liu C, Lin X, Shen J, Huang X (2010) Molecular cloning and expression analysis of a cytosolic Hsp70 gene from Antarctic ice algae / Chlamydomonas sp. ICE-L. Extremophiles 14(3):329-37 CrossRef
    16. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(–Delta Delta C(T)) method. Methods 25(4):402-08 CrossRef
    17. Neidhardt FC, VanBogelen RA (1987) / Escherichia coli and / Salmonella typhimurium: cellular and molecular biology. In: Neidhardt FC (ed) Heat shock response. American Society for Microbiology, Washington DC, pp 1334-345
    18. Oberson J, Rawyler A, Brandle R, Canevascini G (1999) Analysis of the heat-shock response displayed by two / Chaetomium species originating from different thermal environments. Fungal Genet Biol 26(3):178-89 CrossRef
    19. Pearce DA (2008) Climate change and the microbiology of the Antarctic peninsula region. Sci Prog 91(2):203-17 CrossRef
    20. Song WZ, Lin XZ, Huang XH (2012) Characterization and expression analysis of three old shock protein (CSP) genes under different stress conditions in the Antarctic bacterium / Psychrobacter sp. G. Polar Biol 35:1515-524 CrossRef
    21. Spano G, Beneduce L, Perrotta C, Massa S (2005) Cloning and characterization of the Hsp 18.55 gene, a new member of the small heat shock gene family isolated from wine / Lactobacillus plantarum. Res Microbiol 156(2):219-24 CrossRef
    22. Straus D, Walter W, Gross CA (1990) DnaK, DnaJ, and GrpE heat shock proteins negatively regulate heat shock gene expression by controlling the synthesis and stability of σ32. Genes Dev 4(12A):2202-209 CrossRef
    23. Thomas DN, Dieckmann GS (2002) Antarctic sea ice–a habitat for extremophiles. Science 295(5555):641-44 CrossRef
    24. Tilly K, McKittrick N, Zylicz M, Georgopoulos C (1983) The dnaK protein modulates the heat-shock response of / Escherichia coli. Cell 34(2):641-46 CrossRef
    25. Todd MJ, Viitanen PV, Lorimer GH (1994) Dynamics of the chaperonin ATPase cycle: implications for facilitated protein folding. Science 265(5172):659-66 CrossRef
    26. Vandesompele J, Preter KD, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3(7):research 0034.1-034.11
    27. Wu B, Ang D, Snavely M, Georgopoulos C (1994) Isolation and characterization of point mutations in the / Escherichia coli grpE heat shock gene. J Bacteriol 176(22):6965-973
    28. Wu B, Wawrzynow A, Zylicz M, Georgopoulos C (1996) Structure-function analysis of the / Escherichia coli GrpE heat shock protein. EMBO J 15(18):4806-816
    29. Xu Z, Sigler PB (1998) GroEL/GroES: structure and function of a two-stroke folding machine. J Struct Biol 124(2-):129-41 CrossRef
    30. Yifrach O, Horovitz A (1995) Nested cooperativity in the ATPase activity of the oligomeric chaperonin GroEL. Biochemistry 34(16):5303-308 CrossRef
    31. Yura T, Nagai H, Mori H (1993) Regulation of the heat-shock response in bacteria. Annu Rev Microbiol 47:321-50 CrossRef
  • 作者单位:Shuai Che (1) (2)
    Weizhi Song (1) (2)
    Xuezheng Lin (1) (2)

    1. The First Institute of Oceanography, SOA, Qingdao, 266061, China
    2. Key Lab of Marine Bioactive Substances, SOA, Qingdao, 266061, China
  • ISSN:1432-0991
文摘
Temperature and salinity fluctuations are two of the most important factors affecting the growth of polar bacteria. In an attempt to better understand the function of heat-shock proteins (HSPs) in the adaptive mechanisms of the Antarctic psychrotrophic bacterium Psychrobacter sp. G to such conditions, genes Hsp845, Hsp2538, Hsp2666, and Hsp2667 were cloned on the basis of the draft genome. The expression characteristics of these HSP genes under different stress conditions were analyzed by the qRT-PCR method. Expression of Hsp845 and Hsp2667 was inhibited significantly by low temperature (0 and 10?°C, respectively). There was no difference of expression when Hsp2538 and Hsp2666 were exposed to 0?°C but the expression of Hsp2666 was inhibited when exposed to 10?°C. Expression of Hsp2538 and Hsp2667 was not sensitive but expression of Hsp845 and Hsp2666 was increased at low salinity (0 and 15, respectively). Expression of the four HSP genes was enhanced at high salinity (90 and 120) and at high temperature independent of salinity. By contrast, low temperature had no significant effect independent of salinity.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700