Effects of welding parameters on weld pool characteristics and shape in hybrid laser-TIG welding of AA6082 aluminum alloy: numerical and experimental studies
详细信息    查看全文
  • 作者:Amir Hossein Faraji ; Massoud Goodarzi ; Seyed Hossein Seyedein…
  • 关键词:Hybrid laser arc welding ; Molten pool ; Aluminium alloys ; Mathematical models ; Process parameters
  • 刊名:Welding in the World
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:60
  • 期:1
  • 页码:137-151
  • 全文大小:1,950 KB
  • 参考文献:1.Bagger C, Olsen FO (2005) Review of laser hybrid welding. J Laser Appl 17(1):2–14CrossRef
    2.Mahrle A, Beyer E (2006) Hybrid laser beam welding—classification, characteristics, and applications. J Laser Appl 18(3):169–180CrossRef
    3.Ribic B, Rai R, DebRoy T (2008) Numerical simulation of heat transfer and fluid flow in GTA/Laser hybrid welding. Sci Technol Weld Join 13(8):683–693CrossRef
    4.Bendaoud I, Matteï S, Cicala E, Tomashchuk I, Andrzejewski H, Sallamand P, Mathieu A, Bouchaud F (2014) The numerical simulation of heat transfer during a hybrid laser–MIG welding using equivalent heat source approach. Optics Laser Technol 56:334–342CrossRef
    5.Ascari A, Fortunato A, Orazi L, Campana G (2012) The influence of process parameters on porosity formation in hybrid LASER-GMA welding of AA6082 aluminum alloy. Optics Laser Technol 44(5):1485–1490CrossRef
    6.Piekarska W, Kubiak M (2013) Modeling of thermal phenomena in single laser beam and laser-arc hybrid welding processes using projection method. Appl Math Model 37(4):2051–2062CrossRef
    7.Kong F, Kovacevic R (2010) 3D finite element modeling of the thermally induced residual stress in the hybrid laser/arc welding of lap joint. J Mater Process Technol 210(6–7):941–950CrossRef
    8.Brandizzi M, Satriano AA, Sorgente D, Tricarico L (2013) Laser–arc hybrid welding of Ti6Al4V titanium alloy: mechanical characterization of joints and gap tolerance. Weld Int 27(2):113–120CrossRef
    9.Moradi M, Ghoreishi M, Frostevarg J, Kaplan AFH (2013) An investigation on stability of laser hybrid arc welding. Opt Lasers Eng 51(4):481–487CrossRef
    10.Zhang C, Li G, Gao M, Yan J, Zeng XY (2013) Microstructure and process characterization of laser-cold metal transfer hybrid welding of AA6061 aluminum alloy. Int J Adv Manuf Technol 68(5–8):1253–1260CrossRef
    11.Chen YB, Lei ZL, Li LQ, Wu L (2006) Experimental study on welding characteristics of CO2 laser TIG hybrid welding process. Sci Technol Weld Join 11(4):403–411CrossRef
    12.Möller F, Thomy C (2013) Interaction effects between laser beam and plasma arc in hybrid welding of aluminum. Phys Procedia 41:81–89CrossRef
    13.Piekarska W, Kubiak M (2011) Three-dimensional model for numerical analysis of thermal phenomena in laser–arc hybrid welding process. Int J Heat Mass Transf 54(23–24):4966–4974CrossRef
    14.Ribic B, Palmer TA, DebRoy T (2009) Problems and issues in laser-arc hybrid welding. Int Mater Rev 54(4):223–244CrossRef
    15.Ming G, Xiaoyan Z, Qianwu H (2007) Effects of gas shielding parameters on weld penetration of CO2 laser-TIG hybrid welding. J Mater Process Technol 184(1–3):177–183CrossRef
    16.Tani G, Campana G, Fortunato A, Ascari A (2007) The influence of shielding gas in hybrid LASER–MIG welding. Appl Surf Sci 253(19):8050–8053CrossRef
    17.Liu LM, Yuan ST, Li CB (2012) Effect of relative location of laser beam and TIG arc in different hybrid welding modes. Sci Technol Weld Join 17(6):441–446
    18.Xu GX, Wu C, Qin GL, Wang XY, Lin SY (2011) Adaptive volumetric heat source models for laser beam and laser + pulsed GMAW hybrid welding processes. Int J Adv Manuf Technol 57(1–4):245–255CrossRef
    19.Mazar Atabaki M, Nikodinovski M, Chenier P, Ma J, Liu W, Kovacevic R (2014) Experimental and numerical investigations of hybrid laser arc welding of aluminum alloys in the thick T-joint configuration. Optics Laser Technol 59:68–92CrossRef
    20.Faraji A, Goodarzi M, Seyedein S, Zamani M (2014) Experimental study and numerical modeling of arc and weld pool in stationary GTA welding of pure aluminum. Int J Adv Manuf Technol:1–13
    21.Faraji AH, Bahmani A, Goodarzi M, Seyedein SH, Shbani MO (2014) Numerical and experimental investigations of weld pool geometry in GTA welding of pure aluminum. J Cent South Univ 21:20–26CrossRef
    22.Goodarzi M, Choo R, Takasu T, Toguri JM (1998) The effect of the cathode tip angle on the gas tungsten arc welding arc and weld pool: II. The mathematical model for the weld pool. J Phys D Appl Phys 31(5):569–583CrossRef
    23.Rai R, Elmer JW, Palmer TA, DebRoy T (2007) Heat transfer and fluid flow during keyhole mode laser welding of tantalum, Ti–6Al–4V, 304L stainless steel and vanadium. J Phys D Appl Phys 40(18):5753–5766CrossRef
    24.Abderrazak K, Kriaa W, Ben Salem W, Mhiri H, Lepalec G, Autric M (2009) Numerical and experimental studies of molten pool formation during an interaction of a pulse laser (Nd:YAG) with a magnesium alloy. Optics Laser Technol 41(4):470–480CrossRef
    25.Faraji A, Goodarzi M, Seyedein S, Barbieri G, Maletta C (2014) Numerical modeling of heat transfer and fluid flow in hybrid laser–TIG welding of aluminum alloy AA6082. Int J Adv Manuf Technol:1–16.
    26.Farzadi A, Serajzadeh S, Kokabi AH (2008) Modeling of heat transfer and fluid flow during gas tungsten arc welding of commercial pure aluminum. Int J Adv Manuf Technol 38(3–4):258–267CrossRef
    27.Farzadi A, Serajzadeh S, Kokabi AH (2010) Investigation of weld pool in aluminum alloys: geometry and solidification microstructure. Int J Therm Sci 49(5):809–819CrossRef
    28.Abderrazak K, Bannour S, Mhiri H, Lepalec G, Autric M (2009) Numerical and experimental study of molten pool formation during continuous laser welding of AZ91 magnesium alloy. Comput Mater Sci 44(3):858–866CrossRef
    29.Piekarska W, Kubiak M, Bokota A (2011) Numerical simulation of thermal phenomena and phase transformations in laser-arc hybrid welding joints. Archieve Metall Mater 56(2):409–421
    30.Xu P-q, Bao C-m, Lu F-g, Ma C-w, He J-p, H-c C, Yang S-l (2011) Numerical simulation of laser–tungsten inert arc deep penetration welding between WC–Co cemented carbide and invar alloys. Int J Adv Manuf Technol 53(9–12):1049–1062CrossRef
    31.Hu B, Gd O (2005) Synergetic effects of hybrid laser/arc welding. Sci Technol Weld Join 10(4):427–431CrossRef
    32.Hu B, Gd O (2005) Laser induced stabilisation of the welding arc. Sci Technol Weld Join 10(1):76–81CrossRef
    33.Le Guen E, Carin M, Fabbro R, Coste F, Le Masson P (2011) 3D heat transfer model of hybrid laser Nd:Yag-MAG welding of S355 steel and experimental validation. Int J Heat Mass Transf 54(7–8):1313–1322CrossRef
    34.Akbari M, Saedodin S, Toghraie D, Shoja-Razavi R, Kowsari F (2014) Experimental and numerical investigation of temperature distribution and melt pool geometry during pulsed laser welding of Ti6Al4V alloy. Optics Laser Technol 59:52–59CrossRef
    35.Rai R, Roy GG, DebRoy T (2007) A computationally efficient model of convective heat transfer and solidification characteristics during keyhole mode laser welding. Journal of Applied Physics 101 (5).
    36.Roy GG, Elmer JW, DebRoy T (2006) Mathematical modeling of heat transfer, fluid flow, and solidification during linear welding with a pulsed laser beam. Journal of Applied Physics 100 (3).
    37.Rai R, Kelly SM, Martukanitz RP, DebRoy T (2008) A convective heat-transfer model for partial and full penetration keyhole mode laser welding of a structural steel. Metall and Mat Trans A 39(1):98–112CrossRef
    38.Dong H, Gao H, Wu L (2005) Heat transfer and fluid flow in fusion type PA-GTA double-sided welding. Model Simul Mater Sci Eng 13(8):1205CrossRef
    39.Yuzhen Z, Heping Z, Yaowu S (2006) The study of surface active element on weld pool development in A-TIG welding. Model Simul Mater Sci Eng 14(3):331CrossRef
    40.Zhou J, Tsai HL (2008) Modeling of transport phenomena in hybrid laser-MIG keyhole welding. Int J Heat Mass Transf 51(17–18):4353–4366CrossRef
    41.Cho W-I, Na S-J, Thomy C, Vollertsen F (2012) Numerical simulation of molten pool dynamics in high power disk laser welding. J Mater Process Technol 212(1):262–275CrossRef
    42.Cho JH, Na SJ (2009) Three-dimensional analysis of molten pool in GMA-laser hybrid welding. Welding J (Miami, Fla) 88(2):35s–43s
    43.Han S-W, Cho W-I, Na S-J, Kim C-H (2013) Influence of driving forces on weld pool dynamics in GTA and laser welding. Weld World 57(2):257–264CrossRef
    44.Jamshidi Aval H, Farzadi A, Serajzadeh S, Kokabi AH (2009) Theoretical and experimental study of microstructures and weld pool geometry during GTAW of 304 stainless steel. Int J Adv Manuf Technol 42(11–12):1043–1051CrossRef
    45.Gao Z, Ojo OA (2012) Modeling analysis of hybrid laser-arc welding of single-crystal nickel-base superalloys. Acta Mater 60(6–7):3153–3167CrossRef
    46.Haiyan Z, Wenchong N, Bin Z, Yongping L, Masaru K, Takashi I (2011) Modelling of keyhole dynamics and porosity formation considering the adaptive keyhole shape and three-phase coupling during deep-penetration laser welding. J Phys D Appl Phys 44(48):485302CrossRef
    47.Ribic B (2011) Modeling of plasma and thermo-fluid transport in hybrid welding. The Pennsylvania State University, United States
    48.Tsai NS, Eagar TW (1985) Distribution of the heat and current fluxes in gas tungsten arcs. Metall Trans B 16(4):841–846CrossRef
    49.Wu CS, Gao JQ (2002) Analysis of the heat flux distribution at the anode of a TIG welding arc. Comput Mater Sci 24(3):323–327CrossRef
    50.Ono M, Shinbo Y, Yoshitake A, Ohmura M (2002) Development of laser-arc hybrid welding. NKK TECHNICAL REVIEW 86:8–12
    51.Zhang W, Kim CH, DebRoy T (2004) Heat and fluid flow in complex joints during gas metal arc welding-Part II: Application to fillet welding of mild steel. J Appl Phys 95(9):5220–5229CrossRef
  • 作者单位:Amir Hossein Faraji (1)
    Massoud Goodarzi (1)
    Seyed Hossein Seyedein (1)
    Carmine Maletta (2)

    1. School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran, Iran
    2. Department of Mechanical Engineering, University of Calabria, Arcavacata di Rende, Cosenza, Italy
  • 刊物主题:Metallic Materials; Continuum Mechanics and Mechanics of Materials; Theoretical and Applied Mechanics;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1878-6669
文摘
The effects of three important welding parameters including laser power, welding current and welding speed on the weld pool characteristics, shape and dimensions in hybrid laser-TIG welding of AA6082 aluminum alloy are studied by numerical, experimental, and statistical approaches. For this aim, first, a 3D numerical model is used to simulate heat transfer and fluid flow in the weld pool and then resultant weld shape for various welding conditions. Besides, a set of experiments are performed to validate and calibrate the model. Finally, analysis of variance (ANOVA) method is applied to investigate more precisely how welding parameters affect weld dimensions. The simulation results show with increasing the laser power and welding current and decreasing the welding speed, the Marangoni and buoyancy forces increase. With increasing the laser power, the weld depth increases more significantly than the weld width. The weld half width increases with increasing the welding current, whereas the weld pool depth is relatively unchanged. Furthermore, with increasing the welding speed, both weld pool depth and half width decrease with similar slope. Generally, the presented model showed a good capability to predict the weld geometry and characteristics under various applied welding conditions which can reduce number of needed experiments. Keywords (IIW Thesaurus) Hybrid laser arc welding Molten pool Aluminium alloys Mathematical models Process parameters

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700