Synthesis and characterization of biomimetic Fe3O4/coke magnetic nanoparticles composite material
详细信息    查看全文
  • 作者:Lulu Lu 卢露隿/a> ; Wenbing Li 李文僿/a> ; Guanghua Wang…
  • 关键词:biomimetic ; Fe3O4/Coke ; heterogeneous catalyst ; P ; NP
  • 刊名:Journal of Wuhan University of Technology--Materials Science Edition
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:31
  • 期:2
  • 页码:254-259
  • 全文大小:776 KB
  • 参考文献:[1]Neuberger T, Schöpf B, Hofmann H, et al. Superparamagnetic Nanoparticles for Biomedical Applications: Possibilities and Limitations of A New Drug Delivery System[J]. J. Magn. Magn. Mater., 2005, 293: 483–496CrossRef
    [2]Portet D, Rump E, Lejeune JJ, et al. Nonpolymeric Coatings of Iron Oxide Colloids for Biological Use as Magnetic Resonance Imaging Contrast Agents[J]. J. Colloid Inter. Sci., 2001, 238: 37–42CrossRef
    [3]Ito A, Shinkai M, Honda H, et al. Augmentation of MHC Class I Antigen Presentation Via Heat Shock Protein Expression by Hyperthermia[J]. J. Biosci. Bioeng., 2005, 50: 515–522
    [4]Zhang Y, Chen YS, Westerhoff P, et al. Stability of Commercial Metal Oxide Nanoparticles in Water[J]. Water Res., 2008, 42(8-9): 2204–2212CrossRef
    [5]Pickrodt RV, Fuentesa MC, Carolina P, et al. Influence of Stirring Velocity on the Synthesis of Magnetite Nanoparticles (Fe3O4) by the Co-precipitation Method[J]. J. Alloy. Compd., 2009, 488: 227–231CrossRef
    [6]Bruce IJ, Taylor J, Todd M, et al. Synthesis, Characterisation and Application of Silica-magnetite Nanocomposites[J]. J. Magn. Magn. Mater., 2004, 284(1): 145–160CrossRef
    [7]Asuha S, Suyala B, Siqintana X, et al. Direct Synthesis of Fe3O4 Nanopowder by Thermal Decomposition of Fe-urea Complex and its Properties[J]. J. Alloy. Compd., 2011, 509(6): 2870–2873CrossRef
    [8]Hasanpour A, Niyaifar M, Asan M, et al. Synthesis and Characterization of Fe3O4 and ZnO Nanocomposites by the Sol-gel Method[J]. J. Magn. Magn. Mater., 2013, 334: 43–44CrossRef
    [9]Zubir NA, Yacou C, Motuzas J, et al. Structural and Functional Investigation of Graphene Oxide-Fe3O4 Nanocomposites for the Heterogeneous Fenton-like Reaction[J]. Sci. Rep-UK., 2014, 4: 4594
    [10]Shahamat YD, Farzadkia M, Nasseri S, et al. Magnetic Heterogeneous Catalytic Ozonation: A New Removal Method for Phenol in Industrial Wastewater[J]. J. Environ. Healt., 2014, 12: 50–61
    [11]Li SZ, Gong YB, Yang YC, et al. Bisphenol A from Water and their Regeneration[J]. Chem. Eng. J., 2015, 260: 231–239CrossRef
    [12]Wauters S, Marin GB. Computer Generation of a Network of Elementary Steps for Coke Formation during the Thermal Cracking of Hydrocarbons[J]. Chem. Eng. J., 2001, 82(1-3): 267–279CrossRef
    [13]Catak S, Hemelsoet IK, Hermosilla L, et al. Competitive Reactions of Organophosphorus Radicals on Coke Surfaces[J]. Chem-Eur. J., 2011, 17(43): 12027–12036CrossRef
    [14]Wan D, Li WB, Wang GH, et al. Adsorption and Heterogeneous Degradation of Rhodamine B on the Surface of Magnetic Bentonite Material[J]. Appl. Surf. Sci., 2015, 349: 988–996CrossRef
    [15]Kraines S, Akatsuka T, Crissman LW, et al. Pollution and Cost in the Coke-Making Supply Chain in Shanxi Province, China[J]. J. Ind. Ecol., 2002, 6(3-4): 161–184CrossRef
    [16]Yang SJ, He HP, Wu DQ, et al. Decolorization of Methylene Blue by Heterogeneous Fenton Reaction Using Fe3-xTixO4 (0 x 0. 78) at Neutral pH Values[J]. Appl. Catal. B-Environ., 2009, 89(3-4): 527–535CrossRef
    [17]Wang NN, Zhen T, Jiang JP, et al. Pilot-scale Treatment of p-Nitrophenol Wastewater by Microwave-enhanced Fenton Oxidation Process: Effects of System Parameters and Kinetics Study[J]. Chem. Eng. J., 2014, 239: 351–359CrossRef
    [18]Feng JY, Hu XJ, Yue PL. Discoloration and Mineralization of Orange II by Using a Bentonite Clay-based Fe Nanocomposite Film as a Heterogeneous Photo-Fenton Catalyst[J]. Water Res., 2005, 39(1): 89–96CrossRef
    [19]Paipa C, Mateo M, Godoy I, et al. Comparative Study of Alternative Methods for the Simultaneous Determination of Fe3+ and Fe2+ in Leaching Solutions and in Acid Mine Drainages[J]. Miner. Eng., 2005, 18(11): 1116–1119CrossRef
    [20]Zhang Z, Kong J. Novel Magnetic Fe3O4@C Nanoparticles as Adsorbents for Removal of Organic dyes from Aqueous Solution[J]. J. Hazard. Mater., 2011, 193: 325–329CrossRef
    [21]Ilgeun Oh, Myeongjin Kim, Jooheon Kim. Deposition of Fe3O4 on Oxidized Activated Carbon by Hydrazine Reducing Method for High Performance Supercapacitor[J]. Microelectron. Reliab., 2014, 55: 114–122
    [22]Hu XB, Liu BZ, Deng YH, et al. Adsorption and Heterogeneous Fenton Degradation of 17a-methyltestosterone on Nano Fe3O4/MWCNTs in Aqueous Solution[J]. Appl. Catal. B-Environ., 2011, 107(3/4): 274–283CrossRef
    [23]Li Y, Leng T, Lin H, et al. Preparation of Fe3O4@ZrO2 Core-shell Microspheres as Affinity Probes for Selective Enrichment and Direct Determination of Phosphopeptides Using Matrix-assisted Laser Desorption Ionization Mass Spectrometry[J]. J. Proteome Res., 2007, 6: 4498–4510CrossRef
    [24]Zhang S, Niu H, Hu Z, et al. Preparation of Carbon Coated Fe3O4 Nanoparticles and Their Application for Solid-phase Extraction of Polycyclic Aromatic Hydrocarbons from Environmental Water Samples[J]. J. Chromatogr. A, 2010, 1217: 4757–4764CrossRef
    [25]Eklund PC, Holden JM, Jishi RA. Vibrational Modes of Carbon Nanotubes; Spectroscopy and Theory[J]. Carbon, 1995, 33: 959–972CrossRef
    [26]Brown TL, LeMay HE, Bursten BE, et al. Chemistry-The Central Science[M]. 11th ed., Pearson Education, London, 2009.
    [27]Oliveira LCA, Riosa RVRA, Fabris JD, et al. Clay-iron Oxide Magnetic Compositesfor the Adsorption of Contaminants in Water[J]. Appl. Clay Sci., 2003, 22(4): 169–177CrossRef
    [28]Xu LL, Wang J, Zhang XH. Development of a Novel Integrated Membrane System Incorporated with an Activated Coke Adsorption unit for Advanced Coal Gasication Wastewater Treatment[J]. Colloid. Surface. A., 2015, 484: 99–107CrossRef
    [29]Sun SP, Lemley AT. p-Nitrophenol Degradation by a Heterogeneous Fenton-like Reaction on Nano-magnetite: Process Optimization, Kinetics, and Degradation Pathways[J]. J. Mol. Catal. A-Chem., 2011, 349: 71–79CrossRef
    [30]Zhou L, Zhou MH, Hu ZX, et al. Chemically Modified Graphite Felt as an Efficient Cathode in Electro-Fenton for p-nitrophenol Degradation[J]. Electrochimica Acta., 2014, 140: 376–383CrossRef
  • 作者单位:Lulu Lu 卢露露 (1)
    Wenbing Li 李文兵 (1)
    Guanghua Wang (1)
    Zheng Zhang (1)
    Dong Wan (1)
    Lijun Lü (1)
    Nianru Liu (1)
    Biao Chen (1)
    Shiyun Jiang (2)

    1. College of Chemical Engineering and Technology, Wuhan University of Science and Technology, Wuhan, 430081, China
    2. College of Biological and Chemicial Engineering, Guangxi University of Science and Technology, Guangxi, 545006, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Materials Science
    Chinese Library of Science
  • 出版者:Wuhan University, co-published with Springer
  • ISSN:1993-0437
文摘
A composite material (Fe3O4/Coke) using coke supported Fe3O4 magnetic nanoparticles was successfully prepared via an in-situ chemical oxidation precipitation method and characterized by SEM, XRD, Raman, and FTIR. The results showed that the Fe3O4 nanoparticles existed steadily on the surface of coke, with better dispersing and smaller particle size. The catalytic ability of Fe3O4/Coke were investigatied by degrading p-nitrophenol (P-NP). The results showed that the apparent rate constant for the P-NP at 1.0 g·L−1 catalyst, 30 mmol·L−1 H2O2, pH=3.0, 30 °C and the best ratio of Coke/Fe3O4 0.6, was evaluated to be 0.027 min–1, the removal rate of CODCr was 75.47%, and the dissolubility of Fe was 2.42 mg·L–1. Compared with pure Fe3O4, the catalytic ability of Fe3O4/Coke in the presence of H2O2 was greatly enhanced. And Fe3O4/Coke was a green and environmental catalyst with high catalytic activity, showing a good chemical stability and reusability.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700