CUL4A overexpression enhances lung tumor growth and sensitizes lung cancer cells to Erlotinib via transcriptional regulation of EGFR
详细信息    查看全文
  • 作者:Yunshan Wang (6) (7)
    Pengju Zhang (8)
    Ziming Liu (9)
    Qin Wang (10)
    Mingxin Wen (6)
    Yuli Wang (6)
    Hongtu Yuan (11)
    Jian-Hua Mao (12)
    Guangwei Wei (6)

    6. Department of Anatomy and Key Laboratory of Experimental Teratology
    ; Ministry of Education ; Shandong University School of Medicine ; 44 Wenhua Xi Road ; Jinan ; Shandong ; 250012 ; P.R. China
    7. Department of International Biotechnology R&D Center
    ; Shandong University School of Ocean ; 180 Wenhua Xi Road ; Weihai ; Shandong ; 264209 ; P.R. China
    8. Department of Biochemistry and Molecular Biology
    ; Shandong University School of Medicine ; 44 Wenhua Xi Road ; Jinan ; Shandong ; 250012 ; P.R. China
    9. Department of Neurosurgery
    ; The Fifth People鈥檚 Hospital ; 447 Jingshen Road ; Jinan ; 250022 ; P.R. China
    10. Department of Anesthesiology
    ; Qilu Hospital ; Shandong University ; 107 Wenhua Xi Road ; Jinan ; 250012 ; P.R. China
    11. Department of Pathology
    ; Shandong Cancer Hospital and Institute ; Jinan ; 250012 ; P.R. China
    12. Life Sciences Division
    ; Lawrence Berkeley National Laboratory ; Berkeley ; CA ; 94127 ; USA
  • 关键词:CUL4A ; Lung cancer ; EGFR ; Erlotinib
  • 刊名:Molecular Cancer
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:13
  • 期:1
  • 全文大小:3,270 KB
  • 参考文献:1. Siegel, R, Naishadham, D, Jemal, A (2012) Cancer statistics, 2012. CA Cancer J Clin 62: pp. 10-29 CrossRef
    2. Raine, R, Wong, W, Scholes, S, Ashton, C, Obichere, A, Ambler, G (2010) Social variations in access to hospital care for patients with colorectal, breast, and lung cancer between 1999 and 2006: retrospective analysis of hospital episode statistics. BMJ 340: pp. b5479 CrossRef
    3. Littlefield, P, Jura, N (2013) EGFR lung cancer mutants get specialized. Proc Natl Acad Sci U S A 110: pp. 15169-15170 CrossRef
    4. Liu, X, Lu, Y, Zhu, G, Lei, Y, Zheng, L, Qin, H, Tang, C, Ellison, G, McCormack, R, Ji, Q (2013) The diagnostic accuracy of pleural effusion and plasma samples versus tumour tissue for detection of EGFR mutation in patients with advanced non-small cell lung cancer: comparison of methodologies. J Clin Pathol 66: pp. 1065-1069 CrossRef
    5. Traynor, AM, Weigel, TL, Oettel, KR, Yang, DT, Zhang, C, Kim, K, Salgia, R, Iida, M, Brand, TM, Hoang, T, Campbell, TC, Hernan, HR, Wheeler, DL (2013) Nuclear EGFR protein expression predicts poor survival in early stage non-small cell lung cancer. Lung Cancer 81: pp. 138-141 CrossRef
    6. Yamashita, F, Azuma, K, Yoshida, T, Yamada, K, Kawahara, A, Hattori, S, Takeoka, H, Zaizen, Y, Kawayama, T, Kage, M, Hoshino, T (2013) Prognostic value of EGFR mutation and ERCC1 in patients with non-small cell lung cancer undergoing platinum-based chemotherapy. PLoS One 8: pp. e71356 CrossRef
    7. Seto, T, Kato, T, Nishio, M, Goto, K, Atagi, S, Hosomi, Y, Yamamoto, N, Hida, T, Maemondo, M, Nakagawa, K, Nagase, S, Okamoto, I, Yamanka, T, Tajima, K, Harada, R, Fukuoka, M, Yamamoto, N (2014) Erlotinib alone or with bevacizumab as first-line therapy in patients with advanced non-squamous non-small-cell lung cancer harbouring EGFR mutations (JO25567): an open-label, randomised, multicentre, phase 2 study. Lancet Oncol 15: pp. 1236-1244 CrossRef
    8. Noto, A, De Vitis, C, Roscilli, G, Fattore, L, Malpicci, D, Marra, E, Luberto, L, D鈥橝ndrilli, A, Coluccia, P, Giovagnoli, MR, Normanno, N, Ruco, L, Aurisicchio, L, Mancini, R, Ciliberto, G (2013) Combination therapy with anti-ErbB3 monoclonal antibodies and EGFR TKIs potently inhibits non-small cell lung cancer. Oncotarget 4: pp. 1253-1265
    9. Lee, J, Zhou, P (2012) Pathogenic Role of the CRL4 Ubiquitin Ligase in Human Disease. Front Oncol 2: pp. 21
    10. Sugasawa, K (2009) The CUL4 enigma: culling DNA repair factors. Mol Cell 34: pp. 403-404 CrossRef
    11. Nag, A, Bagchi, S, Raychaudhuri, P (2004) Cul4A physically associates with MDM2 and participates in the proteolysis of p53. Cancer Res 64: pp. 8152-8155 CrossRef
    12. Li, B, Jia, N, Kapur, R, Chun, KT (2006) Cul4A targets p27 for degradation and regulates proliferation, cell cycle exit, and differentiation during erythropoiesis. Blood 107: pp. 4291-4299 CrossRef
    13. Nishitani, H, Shiomi, Y, Iida, H, Michishita, M, Takami, T, Tsurimoto, T (2008) CDK inhibitor p21 is degraded by a proliferating cell nuclear antigen-coupled Cul4-DDB1Cdt2 pathway during S phase and after UV irradiation. J Biol Chem 283: pp. 29045-29052 CrossRef
    14. Han, JH, Zhang, H, Zhang, HL, Wang, ZQ, Zhou, H, Zhang, ZG (2013) A Cul4 E3 Ubiquitin Ligase Regulates Histone Hand-Off during Nucleosome Assembly. Cell 155: pp. 817-829 CrossRef
    15. Hu, J, Xiong, Y (2006) An evolutionarily conserved function of proliferating cell nuclear antigen for Cdt1 degradation by the Cul4-Ddb1 ubiquitin ligase in response to DNA damage. J Biol Chem 281: pp. 3753-3756 CrossRef
    16. Chen, LC, Manjeshwar, S, Lu, Y, Moore, D, Ljung, BM, Kuo, WL, Dairkee, SH, Wernick, M, Collins, C, Smith, HS (1998) The human homologue for the Caenorhabditis elegans cul-4 gene is amplified and overexpressed in primary breast cancers. Cancer Res 58: pp. 3677-3683
    17. Yasui, K, Arii, S, Zhao, C, Imoto, I, Ueda, M, Nagai, H, Emi, M, Inazawa, J (2002) TFDP1, CUL4A, and CDC16 identified as targets for amplification at 13q34 in hepatocellular carcinomas. Hepatology 35: pp. 1476-1484 CrossRef
    18. Schindl, M, Gnant, M, Schoppmann, SF, Horvat, R, Birner, P (2007) Overexpression of the human homologue for Caenorhabditis elegans cul-4 gene is associated with poor outcome in node-negative breast cancer. Anticancer Res 27: pp. 949-952
    19. Liu, L, Lee, S, Zhang, J, Peters, SB, Hannah, J, Zhang, Y, Yin, Y, Koff, A, Ma, L, Zhou, P (2009) CUL4A abrogation augments DNA damage response and protection against skin carcinogenesis. Mol Cell 34: pp. 451-460 CrossRef
    20. Hung, MS, Mao, JH, Xu, Z, Yang, CT, Yu, JS, Harvard, C, Lin, YC, Bravo, DT, Jablons, DM, You, L (2011) Cul4A is an oncogene in malignant pleural mesothelioma. J Cell Mol Med 15: pp. 350-358 CrossRef
    21. Birner, P, Schoppmann, A, Schindl, M, Dinhof, C, Jesch, B, Berghoff, AS, Schoppmann, SF (2012) Human homologue for Caenorhabditis elegans CUL-4 protein overexpression is associated with malignant potential of epithelial ovarian tumours and poor outcome in carcinoma. J Clin Pathol 65: pp. 507-511 CrossRef
    22. Ren, S, Xu, C, Cui, Z, Yu, Y, Xu, W, Wang, F, Lu, J, Wei, M, Lu, X, Gao, X, Liang, Y, Mao, JH, Sun, Y (2012) Oncogenic CUL4A determines the response to thalidomide treatment in prostate cancer. J Mol Med 90: pp. 1121-1132 CrossRef
    23. Melchor, L, Saucedo-Cuevas, LP, Munoz-Repeto, I, Rodriguez-Pinilla, SM, Honrado, E, Campoverde, A, Palacios, J, Nathanson, KL, Garcia, MJ, Benitez, J (2009) Comprehensive characterization of the DNA amplification at 13q34 in human breast cancer reveals TFDP1 and CUL4A as likely candidate target genes. Breast Cancer Res 11: pp. R86 CrossRef
    24. Yang, YL, Hung, MS, Wang, Y, Ni, J, Mao, JH, Hsieh, D, Au, A, Kumar, A, Quigley, D, Fang, LT, Yeh, CC, Xu, Z, Jablons, DM, You, L (2014) Lung tumourigenesis in a conditional Cul4A transgenic mouse model. J Pathol 233: pp. 113-123 CrossRef
    25. Kim, TY, Jackson, S, Xiong, Y, Whitsett, TG, Lobello, JR, Weiss, GJ, Tran, NL, Bang, YJ, Der, CJ (2013) CRL4A-FBXW5-mediated degradation of DLC1 Rho GTPase-activating protein tumor suppressor promotes non-small cell lung cancer cell growth. Proc Natl Acad Sci U S A 110: pp. 16868-16873 CrossRef
    26. Lo, YH, Ho, PC, Wang, SC (2012) Epidermal growth factor receptor protects proliferating cell nuclear antigen from cullin 4A protein-mediated proteolysis. J Biol Chem 287: pp. 27148-27157 CrossRef
    27. Charpidou, A, Blatza, D, Anagnostou, V, Syrigos, KN (2008) Review. EGFR mutations in non-small cell lung cancer鈥揷linical implications. In Vivo 22: pp. 529-536
    28. Kawai, H, Ishii, A, Washiya, K, Konno, T, Kon, H, Yamaya, C, Ono, I, Ogawa, J (2005) Combined overexpression of EGFR and estrogen receptor alpha correlates with a poor outcome in lung cancer. Anticancer Res 25: pp. 4693-4698
    29. Wang, Y, Wen, M, Kwon, Y, Xu, Y, Liu, Y, Zhang, P, He, X, Wang, Q, Huang, Y, Jen, KY, LaBarge, MA, You, L, Kogan, SC, Gray, JW, Mao, JH, Wei, G (2014) CUL4A Induces Epithelial-Mesenchymal Transition and Promotes Cancer Metastasis by Regulating ZEB1 Expression. Cancer Res 74: pp. 520-531 CrossRef
    30. Oxnard, GR, Binder, A, Janne, PA (2013) New targetable oncogenes in non-small-cell lung cancer. J Clin Oncol 31: pp. 1097-1104 CrossRef
    31. Shinomiya, T, Mori, T, Ariyama, Y, Sakabe, T, Fukuda, Y, Murakami, Y, Nakamura, Y, Inazawa, J (1999) Comparative genomic hybridization of squamous cell carcinoma of the esophagus: the possible involvement of the DPI gene in the 13q34 amplicon. Genes Chromosomes Cancer 24: pp. 337-344 CrossRef
    32. Dohna, M, Reincke, M, Mincheva, A, Allolio, B, Solinas-Toldo, S, Lichter, P (2000) Adrenocortical carcinoma is characterized by a high frequency of chromosomal gains and high-level amplifications. Gene Chromosome Canc 28: pp. 145-152 CrossRef
    33. Michiels, EMC, Weiss, MM, Hoovers, JMN, Baak, JPA, Voute, PA, Baas, F, Hermsen, MAJA (2002) Genetic alterations in childhood medulloblastoma analyzed by comparative genomic hybridization. J Pediat Hematol Onc 24: pp. 205-210 CrossRef
    34. El-Mahdy, MA, Zhu, Q, Wang, QE, Wani, G, Praetorius-Ibba, M, Wani, AA (2006) Cullin 4A-mediated proteolysis of DDB2 protein at DNA damage sites regulates in vivo lesion recognition by XPC. J Biol Chem 281: pp. 13404-13411 CrossRef
    35. Hagiwara, K, Kobayashi, K (2013) Importance of the cytological samples for the epidermal growth factor receptor gene mutation test for non-small cell lung cancer. Cancer Sci 104: pp. 291-297 CrossRef
    36. Boutayeb, S, Bensouda, Y, Fadoulkhair, Z, Bakkraoui, K, Bachouchi, M, Errihani, H (2012) [Targeted therapies in digestive oncology]. Pathol Biol (Paris) 60: pp. 264-268 CrossRef
    37. Cagle, PT, Allen, TC (2012) Lung cancer genotype-based therapy and predictive biomarkers: present and future. Arch Pathol Lab Med 136: pp. 1482-1491 CrossRef
    38. Rossi, A, Pasquale, R, Esposito, C, Normanno, N (2013) Should epidermal growth factor receptor tyrosine kinase inhibitors be considered ideal drugs for the treatment of selected advanced non-small cell lung cancer patients?. Cancer Treat Rev 39: pp. 489-497 CrossRef
    39. Laurie, SA, Goss, GD (2013) Role of epidermal growth factor receptor inhibitors in epidermal growth factor receptor wild-type non-small-cell lung cancer. J Clin Oncol 31: pp. 1061-1069 CrossRef
    40. Jendrossek, V (2012) The intrinsic apoptosis pathways as a target in anticancer therapy. Curr Pharm Biotechnol 13: pp. 1426-1438 CrossRef
    41. Mansilla, S, Llovera, L, Portugal, J (2012) Chemotherapeutic targeting of cell death pathways. Anticancer Agents Med Chem 12: pp. 226-238 CrossRef
    42. Broadhead, ML, Dass, CR, Choong, PF (2009) Cancer cell apoptotic pathways mediated by PEDF: prospects for therapy. Trends Mol Med 15: pp. 461-467 CrossRef
  • 刊物主题:Cancer Research; Oncology;
  • 出版者:BioMed Central
  • ISSN:1476-4598
文摘
Background CUL4A has been proposed as oncogene in several types of human cancer, but its clinical significance and functional role in human non-small cell lung cancer (NSCLC) remain unclear. Methods Expression level of CUL4A was examined by RT-PCR and Western blot. Forced expression of CUL4A was mediated by retroviruses, and CUL4A silencing by shRNAs expressing lentiviruses. Growth capacity of lung cancer cells was measured by MTT in vitro and tumorigenesis in vivo, respectively. Results We found that CUL4A was highly expressed in human lung cancer tissues and lung cancer cell lines, and this elevated expression positively correlated with disease progression and prognosis. Overexpression of CUL4A in human lung cancer cell lines increased cell proliferation, inhibited apoptosis, and subsequently conferred resistance to chemotherapy. On other hand, silencing CUL4A expression in NSCLC cells reduced proliferation, promoted apoptosis and resulted in tumor growth inhibition in cancer xenograft model. Mechanistically, we revealed CUL4A regulated EGFR transcriptional expression and activation, and subsequently activated AKT. Targeted inhibition of EGFR activity blocked these CUL4A induced oncogenic activities. Conclusions Our results highlight the significance of CUL4A in NSCLC and suggest that CUL4A could be a promising therapy target and a potential biomarker for prognosis and EGFR target therapy in NSCLC patients.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700