Reducing the climate shift in a new coupled model
详细信息    查看全文
  • 作者:Yanli Tang ; Lijuan Li ; Wenjie Dong ; Bin Wang
  • 关键词:Climate drift ; CESM–GAMIL2 ; Initial shock ; Relative humidity threshold
  • 刊名:Chinese Science Bulletin
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:61
  • 期:6
  • 页码:488-494
  • 全文大小:1,951 KB
  • 参考文献:1.Cai W, Gordon HB (1999) Southern high-latitude ocean climate drift in a coupled model. J Clim 12:132–146CrossRef
    2.Dirmeyer PA (2001) Climate drift in a coupled land-atmosphere model. J Hydrometeorol 2:89–100CrossRef
    3.Gordon C (1989) Tropical-ocean–atmosphere interactions in a coupled model. Philos Trans R Soc Lond A 329:207–223CrossRef
    4.Gupta AS, Jourdain NC, Brown JN et al (2013) Climate drift in the CMIP5 models. J Clim 26:8597–8615CrossRef
    5.Rahmstorf S (1995) Climate drift in an ocean model coupled to a simple, perfectly matched atmosphere. Clim Dyn 11:447–458CrossRef
    6.Gupta AS, Muir LC, Brown JN et al (2012) Climate drift in the CMIP3 models. J Clim 25:4621–4640CrossRef
    7.Moore AM, Gordon HB (1994) An investigation of climate drift in a coupled atmosphere–ocean–sea ice model. Clim Dyn 10:81–95CrossRef
    8.Sausen R, Lunkeit F (1990) Some remarks of the cause of climate drift of coupled ocean–atmosphere models. Beitr Phys Atmos 63:141–146
    9.Sausen R, Barthel K, Hasselmann K (1988) Coupled ocean–atmosphere models with flux correction. Clim Dyn 2:145–163CrossRef
    10.Solomon S, Qin D, Manning M et al (2007) Climate change 2007: the physical science basis, contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge
    11.Brown PT, Li W, Li L et al (2014) Top-of-atmosphere radiative contribution to unforced decadal global temperature variability in climate models. Geophys Res Lett 41:5175–5183CrossRef
    12.Jiang X, Wang NL, He JQ et al (2010) A distributed surface energy and mass balance model and its application to a mountain glacier in China. Chin Sci Bull 55:2079–2087CrossRef
    13.Kato S (2009) Interannual variability of the global radiation budget. J Clim 22:4893–4907CrossRef
    14.Loeb N, Kato S, Su W et al (2012) Advances in understanding top-of-atmosphere radiation variability from satellite Observations. Surv Geophys 33:359–385CrossRef
    15.Susskind J, Molnar G, Iredell L et al (2012) Interannual variability of outgoing longwave radiation as observed by AIRS and CERES. J Geophys Res 117:D23107CrossRef
    16.Mauritsen T, Stevens B, Roeckner E et al (2012) Tuning the climate of a global model. J Adv Model Earth Syst 4:M00A01CrossRef
    17.Craig A, Vertenstein M, Jacob R (2012) A new flexible coupler for Earth system modeling developed for CCSM4 and CESM. Int J High Perform Comput Appl 26:31–42CrossRef
    18.Craig AP, Jacob R, Kauffman B et al (2005) CPL6: the new extensible, high-performance parallel coupler for the community climate system model. Int J High Perform Comput Appl 19:309–327CrossRef
    19.Li L, Wang B, Dong L et al (2013) Evaluation of Grid-point Atmospheric Model of IAP LASG version 2 (GAMIL2). Adv Atmos Sci 30:855–867CrossRef
    20.Wang B, Wang H, Ji ZZ et al (2004) Design of a new dynamical core for global atmospheric models based on some efficient numerical methods. Sci China Math 47:4–21CrossRef
    21.Oleson KW et al (2010) Technical description of version 4.0 of the Community Land Model (CLM). NCAR technical note NCAR/TN-478 + STR
    22.Smith RD et al (2010) The Parallel Ocean Program (POP) reference manual. Los Alamos National Laboratory technical report LAUR-10-01853
    23.Hunke EC, Lipscomb WH (2008) CICE: The Los Alamos sea ice model user’s manual, version 4. Los Alamos National Laboratory technical report LA-CC-06-012
    24.Kanamitsu M, Ebisuzaki W, Woollen J et al (2002) NCEP-DOE AMIP-II Reanalysis (R-2). Bull Am Meteorol Soc 83:1631–1643CrossRef
    25.Khvorostyanov VI, Sassen K (2002) Microphysical processes in cirrus and their impact on radiation: a mesoscale modeling perspective. In: Lynch D, Sassen K, Starr DOC et al (eds) Collective monograph “cirrus”. Oxford University Press, Oxford, pp 397–432
    26.Li L, Lin P, Yu Y et al (2013) The flexible global ocean–atmosphere–land system model, Grid-point Version 2: FGOALS-g2. Adv Atmos Sci 30:543–560CrossRef
    27.Li L, Lin P, Yu Y et al (2014) The flexible global ocean–atmosphere–land system, Grid-Point version 2: FGOALS-g2. In: Zhou T, Yu Y, Liu Y et al (eds) Flexible global ocean–atmosphere–land system model. Springer, Berlin, pp 39–43CrossRef
    28.Nigam S (1997) The annual warm to cold phase transition in the eastern equatorial Pacific: diagnosis of the role of stratus cloud top cooling. J Clim 10:2447–2467CrossRef
    29.Wahl S, Latif M, Park W et al (2011) On the tropical Atlantic SST warm bias in the Kiel climate model. Clim Dyn 36:891–906CrossRef
    30.Li H, Kanamitsu M, Hong SY et al (2014) A high-resolution ocean–atmosphere coupled downscaling of the present climate over California. Clim Dyn 42:701–714CrossRef
    31.Yu JY, Mechoso CR (1999) A discussion on the errors in the surface heat fluxes simulated by a coupled GCMs. J Clim 12:416–426CrossRef
    32.Gordon AL (2009) Bottom water formation. In: Steele JH et al (eds) Ocean Currents. Elsevier, London, pp 263–269
    33.Ma C, Mechoso C, Robertson A et al (1996) Peruvian stratus clouds and the tropical Pacific circulation: a coupled ocean atmosphere GCM study. J Clim 9:1635–1645CrossRef
    34.Huang C, Qiao F, Song Z et al (2008) The effect of the wave-induced mixing on the upper ocean temperature in a climate model. Acta Oceanol Sin 27:104–111
  • 作者单位:Yanli Tang (1)
    Lijuan Li (1)
    Wenjie Dong (2) (3)
    Bin Wang (1) (4)

    1. State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
    2. School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai, 519082, China
    3. CAS Center for Excellent in Tibetan Plateau Earth Sciences, Beijing, 100101, China
    4. Ministry of Education Key Laboratory for Earth System Modeling, Center of Earth System Science (CESS), Tsinghua University, Beijing, 100084, China
  • 刊物主题:Science, general; Life Sciences, general; Physics, general; Chemistry/Food Science, general; Earth Sciences, general; Engineering, general;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1861-9541
文摘
Climate drift refers to spurious long-term changes that may be inherent in coupled models when external forcing factors are fixed. Understanding the sources of this drift and tuning the drift are crucial for obtaining reasonable simulations from coupled models. To prepare for the upcoming Coupled Model Intercomparison Project Phase 6, a new coupled model has been constructed based on the Community Earth System Model and the Grid-point Atmospheric Model of IAP LASG version 2. However, the surface temperature predicted by the new model is too underestimated, and this underestimation is caused by a type of climate drift, i.e., “initial shock.” This study analyzes the source of the cold surface temperature from the perspective of energy balance and attempts to reduce the surface temperature drift by tuning the relative humidity threshold for low cloud.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700