Thyrotropin and Alzheimer’s Disease Risk in the Elderly: a Systematic Review and Meta-Analysis
详细信息    查看全文
  • 作者:Yunyang Wang ; Qi Sheng ; Xu Hou ; Bin Wang ; Wenjuan Zhao…
  • 关键词:Thyrotropin ; Mild cognitive impairment ; Alzheimer’s disease
  • 刊名:Molecular Neurobiology
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:53
  • 期:2
  • 页码:1229-1236
  • 全文大小:298 KB
  • 参考文献:1.Ballard C, Gauthier S, Corbett A, Brayne C, Aarsland D, Jones E (2011) Alzheimer’s disease. Lancet 377:1019–1031CrossRef PubMed
    2.Barnes DE, Yaffe K (2011) The projected effect of risk factor reduction on Alzheimer’s disease prevalence. Lancet Neurol 10:819–828PubMedCentral CrossRef PubMed
    3.Huang Y, Mucke L (2012) Alzheimer mechanisms and therapeutic strategies. Cell 148:1204–1222PubMedCentral CrossRef PubMed
    4.Lu JX, Qiang W, Yau WM, Schwieters CD, Meredith SC, Tycko R (2013) Molecular structure of beta-amyloid fibrils in Alzheimer’s disease brain tissue. Cell 154:1257–1268CrossRef PubMed
    5.Reitz C, Jun G, Naj A et al (2013) Variants in the ATP-binding cassette transporter (ABCA7), apolipoprotein E 4, and the risk of late-onset Alzheimer disease in African Americans. JAMA 309:1483–1492PubMedCentral CrossRef PubMed
    6.Guerreiro R, Wojtas A, Bras J et al (2013) TREM2 variants in Alzheimer’s disease. N Engl J Med 368:117–127PubMedCentral CrossRef PubMed
    7.Liu CC, Kanekiyo T, Xu H, Bu G (2013) Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat Rev Neurol 9:106–118PubMedCentral CrossRef PubMed
    8.Langbaum JB, Fleisher AS, Chen K et al (2013) Ushering in the study and treatment of preclinical Alzheimer disease. Nat Rev Neurol 9:371–381PubMedCentral CrossRef PubMed
    9.Jack CR Jr, Knopman DS, Jagust WJ et al (2013) Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol 12:207–216PubMedCentral CrossRef PubMed
    10.Selkoe DJ (2012) Preventing Alzheimer’s disease. Science (New York, NY) 337:1488–1492CrossRef
    11.Thompson CC, Weinberger C, Lebo R, Evans RM (1987) Identification of a novel thyroid hormone receptor expressed in the mammalian central nervous system. Science (New York, NY) 237:1610–1614CrossRef
    12.Thorpe-Beeston JG, Nicolaides KH, Felton CV, Butler J, McGregor AM (1991) Maturation of the secretion of thyroid hormone and thyroid-stimulating hormone in the fetus. N Engl J Med 324:532–536CrossRef PubMed
    13.Laurberg P (2009) Thyroid function: thyroid hormones, iodine and the brain-an important concern. Nat Rev Endocrinol 5:475–476CrossRef PubMed
    14.Parsaik AK, Singh B, Roberts RO et al (2014) Hypothyroidism and risk of mild cognitive impairment in elderly persons: a population-based study. JAMA Neurol 71:201–207PubMedCentral CrossRef PubMed
    15.Suhanov AV, Pilipenko PI, Korczyn AD et al (2006) Risk factors for Alzheimer’s disease in Russia: a case-control study. Eur J Neurol Off J Eur Fed Neurol Soc 13:990–995
    16.Breteler MM, van Duijn CM, Chandra V et al (1991) Medical history and the risk of Alzheimer’s disease: a collaborative re-analysis of case-control studies. EURODEM Risk Factors Research Group. Int J Epidemiol 20(Suppl 2):S36–S42CrossRef PubMed
    17.Annerbo S, Wahlund LO, Lokk J (2006) The significance of thyroid-stimulating hormone and homocysteine in the development of Alzheimer’s disease in mild cognitive impairment: a 6-year follow-up study. Am J Alzheim Dis Other Dementias 21:182–188CrossRef
    18.Hogervorst E, Huppert F, Matthews FE, Brayne C (2008) Thyroid function and cognitive decline in the MRC Cognitive Function and Ageing Study. Psychoneuroendocrinology 33:1013–1022CrossRef PubMed
    19.Tan ZS, Beiser A, Vasan RS et al (2008) Thyroid function and the risk of Alzheimer disease: the Framingham Study. Arch Intern Med 168:1514–1520PubMedCentral CrossRef PubMed
    20.de Jong FJ, den Heijer T, Visser TJ et al (2006) Thyroid hormones, dementia, and atrophy of the medial temporal lobe. J Clin Endocrinol Metab 91:2569–2573CrossRef PubMed
    21.Annerbo S, Kivipelto M, Lokk J (2009) A prospective study on the development of Alzheimer’s disease with regard to thyroid-stimulating hormone and homocysteine. Dement Geriatr Cogn Disord 28:275–280CrossRef PubMed
    22.de Jong FJ, Masaki K, Chen H et al (2009) Thyroid function, the risk of dementia and neuropathologic changes: the Honolulu-Asia aging study. Neurobiol Aging 30:600–606PubMedCentral CrossRef PubMed
    23.Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med 151:264–269CrossRef PubMed
    24.Wells G, Shea B, O’connell D, et al. (2000) The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. (http://​www.​ohri.​ca/​programs/​clinical_​epidemiology/​oxford.​htm )
    25.Higgins J, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327:557–560PubMedCentral CrossRef PubMed
    26.DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7:177–188CrossRef PubMed
    27.Mantel N, Haenszel W (1959) Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 22:719–748
    28.Egger M, Smith GD, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315:629–634PubMedCentral CrossRef PubMed
    29.Duval S, Tweedie R (2000) Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 56:455–463CrossRef PubMed
    30.Beydoun MA, Beydoun HA, Shroff MR, Kitner-Triolo MH, Zonderman AB (2012) Serum leptin, thyroxine and thyroid-stimulating hormone levels interact to affect cognitive function among US adults: evidence from a large representative survey. Neurobiol Aging 33:1730–1743PubMedCentral CrossRef PubMed
    31.de Jongh RT, Lips P, van Schoor NM et al (2011) Endogenous subclinical thyroid disorders, physical and cognitive function, depression, and mortality in older individuals. Eur J Endocrinol Eur Fed Endocr Soc 165:545–554CrossRef
    32.Formiga F, Ferrer A, Padros G, Contra A, Corbella X, Pujol R (2014) Thyroid status and functional and cognitive status at baseline and survival after 3 years of follow-up: the OCTABAIX study. Eur J Endocrinol Eur Fed Endocr Soc 170:69–75CrossRef
    33.Forti P, Olivelli V, Rietti E et al (2012) Serum thyroid-stimulating hormone as a predictor of cognitive impairment in an elderly cohort. Gerontology 58:41–49CrossRef PubMed
    34.Gussekloo J, van Exel E, de Craen AJ, Meinders AE, Frolich M, Westendorp RG (2004) Thyroid status, disability and cognitive function, and survival in old age. JAMA 292:2591–2599CrossRef PubMed
    35.Regal PJ (2012) Antithyroid antibodies, cognition and instrumental activities of daily living in the elderly. Int J Geriatr Psychiatr 27:1317–1318CrossRef
    36.Vadiveloo T, Donnan PT, Cochrane L, Leese GP (2011) The Thyroid Epidemiology, Audit, and Research Study (TEARS): morbidity in patients with endogenous subclinical hyperthyroidism. J Clin Endocrinol Metab 96:1344–1351CrossRef PubMed
    37.Volpato S, Guralnik JM, Fried LP, Remaley AT, Cappola AR, Launer LJ (2002) Serum thyroxine level and cognitive decline in euthyroid older women. Neurology 58:1055–1061CrossRef PubMed
    38.Wahlin A, Bunce D, Wahlin TB (2005) Longitudinal evidence of the impact of normal thyroid stimulating hormone variations on cognitive functioning in very old age. Psychoneuroendocrinology 30:625–637CrossRef PubMed
    39.Wijsman LW, de Craen AJ, Trompet S et al (2013) Subclinical thyroid dysfunction and cognitive decline in old age. PLoS One 8:e59199PubMedCentral CrossRef PubMed
    40.Yamamoto N, Ishizawa K, Ishikawa M et al (2012) Cognitive function with subclinical hypothyroidism in elderly people without dementia: one year follow up. Geriatr Gerontol Int 12:164–165CrossRef PubMed
    41.Kalmijn S, Mehta KM, Pols HA, Hofman A, Drexhage HA, Breteler MM (2000) Subclinical hyperthyroidism and the risk of dementia. The Rotterdam study. Clin Endocrinol 53:733–737CrossRef
    42.Moon JH, Park YJ, Kim TH et al (2014) Lower-but-normal serum TSH level is associated with the development or progression of cognitive impairment in elderly: Korean Longitudinal Study on Health and Aging (KLoSHA). J Clin Endocrinol Metab 99:424–432CrossRef PubMed
    43.Yeap BB, Alfonso H, Chubb SA et al (2012) Higher free thyroxine levels predict increased incidence of dementia in older men: the Health in Men Study. J Clin Endocrinol Metab 97:E2230–E2237CrossRef PubMed
    44.Rhinn H, Fujita R, Qiang L, Cheng R, Lee JH, Abeliovich A (2013) Integrative genomics identifies APOE epsilon4 effectors in Alzheimer’s disease. Nature 500:45–50CrossRef PubMed
    45.Liposits Z, Paull WK, Wu P, Jackson IM, Lechan RM (1987) Hypophysiotrophic thyrotropin releasing hormone (TRH) synthesizing neurons. Ultrastructure, adrenergic innervation and putative transmitter action. Histochemistry 88:1–10CrossRef PubMed
    46.Gan EH, Pearce SH (2012) Clinical review: the thyroid in mind: cognitive function and low thyrotropin in older people. J Clin Endocrinol Metab 97:3438–3449PubMedCentral CrossRef PubMed
    47.Annerbo S, Lokk J (2013) A clinical review of the association of thyroid stimulating hormone and cognitive impairment. ISRN Endocrinol 2013:856017PubMedCentral CrossRef PubMed
    48.Simmonds MC, Higgins JP, Stewart LA, Tierney JF, Clarke MJ, Thompson SG (2005) Meta-analysis of individual patient data from randomized trials: a review of methods used in practice. Clin Trials (London, England) 2:209–217CrossRef
  • 作者单位:Yunyang Wang (1)
    Qi Sheng (1)
    Xu Hou (1)
    Bin Wang (1) (2)
    Wenjuan Zhao (1)
    Shengli Yan (1)
    Yangang Wang (1)
    Shihua Zhao (1)

    1. Department of Endocrinology, Affiliated Hospital of Qingdao University, Qingdao, 266003, China
    2. Essencemed Clinic, Weifang, 261000, China
  • 刊物主题:Neurosciences; Neurobiology; Cell Biology; Neurology;
  • 出版者:Springer US
  • ISSN:1559-1182
文摘
Although several epidemiological studies assessed the relationship between thyrotropin and risk of Alzheimer’s disease in the elderly, the results were inconsistent. A systematic review and meta-analysis of cohort studies was conducted to assess the impact of serum thyrotropin levels on Alzheimer’s disease risk. PubMed, Embase, and Web of Science were searched through September 20, 2014 to identify cohort studies on the relationship between serum thyrotropin levels and risk of Alzheimer’s disease in the elderly. Pooled relative risks (RR) and 95 % confidence intervals (95 % CI) were calculated to assess the risk of Alzheimer’s disease according to serum thyrotropin levels. Eight prospective cohort studies were included, with a total of 9456 participants and 640 cases of Alzheimer’s disease. Low thyrotropin level was significantly associated with an increased risk of Alzheimer’s disease (fixed RR = 1.69, 95 % CI 1.31–2.19, P < 0.001; I 2 = 38.0 %). High thyrotropin level was also significantly associated with an increased risk of Alzheimer’s disease (fixed RR = 1.70, 95 % CI 1.18–2.45, P = 0.005; I 2 = 42.2 %) when compared with normal thyrotropin level. When using random effect model, low thyrotropin level was still significantly associated with risk of Alzheimer’s disease (random RR = 1.65, 95 % CI 1.14–2.37, P = 0.007), but high thyrotropin level was not (random RR = 1.54, 95 % CI 0.88–2.68, P = 0.129). When investigating thyrotropin levels continuously, an inverse but not significant association between serum thyrotropin levels and Alzheimer’s disease risk was observed (per standard deviation increment of thyrotropin: RR = 0.89, 95 % CI 0.78–1.01, P = 0.06; I 2 = 31.3 %). This meta-analysis supports that low thyrotropin level is significantly associated with an increased risk of Alzheimer’s disease in the elderly. Keywords Thyrotropin Mild cognitive impairment Alzheimer’s disease

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700