Characterization of 26 deletion CNVs reveals the frequent occurrence of micro-mutations within the breakpoint-flanking regions and frequent repair of double-strand breaks by templated insertions derived from remote genomic regions
详细信息    查看全文
  • 作者:Ye Wang ; Peiqiang Su ; Bin Hu ; Wenjuan Zhu ; Qibin Li ; Ping Yuan…
  • 刊名:Human Genetics
  • 出版年:2015
  • 出版时间:June 2015
  • 年:2015
  • 卷:134
  • 期:6
  • 页码:589-603
  • 全文大小:3,299 KB
  • 参考文献:Abyzov A, Urban AE, Snyder M, Gerstein M (2011) CNVnator: an approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing. Genome Res 21:974-84View Article PubMed Central PubMed
    Arlt MF, Rajendran S, Birkeland SR, Wilson TE, Glover TW (2012) De novo CNV formation in mouse embryonic stem cells occurs in the absence of Xrcc4-dependent nonhomologous end joining. PLoS Genet 8:e1002981View Article PubMed Central PubMed
    Audrézet MP, Chen JM, Raguénès O, Chuzhanova N, Giteau K, Le Maréchal C, Quéré I, Cooper DN, Férec C (2004) Genomic rearrangements in the CFTR gene: extensive allelic heterogeneity and diverse mutational mechanisms. Hum Mutat 23:343-57View Article PubMed
    Bovee JV (2008) Multiple osteochondromas. Orphanet J Rare Dis 3:3View Article PubMed Central PubMed
    Cardoso-Moreira M, Arguello JR, Clark AG (2012) Mutation spectrum of Drosophila CNVs revealed by breakpoint sequencing. Genome Biol 13:R119View Article PubMed Central PubMed
    Carvalho CM, Pehlivan D, Ramocki MB, Fang P, Alleva B, Franco LM, Belmont JW, Hastings PJ, Lupski JR (2013) Replicative mechanisms for CNV formation are error prone. Nat Genet 45:1319-326View Article PubMed
    Chen JM, Chuzhanova N, Stenson PD, Férec C, Cooper DN (2005) Complex gene rearrangements caused by serial replication slippage. Hum Mutat 26:125-34View Article PubMed
    Chen JM, Cooper DN, Chuzhanova N, Férec C, Patrinos GP (2007) Gene conversion: mechanisms, evolution and human disease. Nat Rev Genet 8:762-75View Article PubMed
    Chen JM, Férec C, Cooper DN (2009a) Closely spaced multiple mutations as potential signatures of transient hypermutability in human genes. Hum Mutat 30:1435-448View Article PubMed
    Chen K, Wallis JW, McLellan MD, Larson DE, Kalicki JM, Pohl CS, McGrath SD, Wendl MC, Zhang Q, Locke DP, Shi X, Fulton RS, Ley TJ, Wilson RK, Ding L, Mardis ER (2009b) BreakDancer: an algorithm for high-resolution mapping of genomic structural variation. Nat Methods 6:677-81View Article PubMed Central PubMed
    Chen JM, Cooper DN, Férec C, Kehrer-Sawatzki H, Patrinos GP (2010) Genomic rearrangements in inherited disease and cancer. Semin Cancer Biol 20:222-33View Article PubMed
    Chen JM, Férec C, Cooper DN (2013) Patterns and mutational signatures of tandem base substitutions causing human inherited disease. Hum Mutat 34:1119-130View Article PubMed
    Conrad DF, Bird C, Blackburne B, Lindsay S, Mamanova L, Lee C, Turner DJ, Hurles ME (2010) Mutation spectrum revealed by breakpoint sequencing of human germline CNVs. Nat Genet 42:385-91View Article PubMed Central PubMed
    De S, Babu MM (2010) A time-invariant principle of genome evolution. Proc Natl Acad Sci USA 107:13004-3009View Article PubMed Central PubMed
    Deem A, Keszthelyi A, Blackgrove T, Vayl A, Coffey B, Mathur R, Chabes A, Malkova A (2011) Break-induced replication is highly inaccurate. PLoS Biol 9:e1000594View Article PubMed Central PubMed
    Devuyst O, Thakker RV (2010) Dent’s disease. Orphanet J Rare Dis 5:28View Article PubMed Central PubMed
    Hastings PJ, Ira G, Lupski JR (2009) A microhomology-mediated break-induced replication model for the origin of human copy number variation. PLoS Genet 5:e1000327View Article PubMed Central PubMed
    Hicks WM, Kim M, Haber JE (2010) Increased mutagenesis and unique mutation signature associated with mitotic gene conversion. Science 329:82-5View Article PubMed Central PubMed
    Huang S, Yu T, Chen Z, Yuan S, Chen S, Xu A (2012) More single-nucleotide mutations surround small insertions than small deletions in primates. Hum Mutat 33:1099-106View Article PubMed
    Iraqui I, Chekkal Y, Jmari N, Pietrobon V, Freon K, Costes A, Lambert SA (2012) Recovery of arrested replication forks by homologous recombination is error-prone. PLoS Genet 8:e1002976View Article PubMed Central PubMed
    Jiang YH, Yuen RK, Jin X, Wang M, Chen N, Wu X, Ju J, Mei J, Shi Y, He M, Wang G, Liang J, Wang Z, Cao D, Carter MT, Chrysler C, Drmic IE, Howe JL, Lau L, Marshall CR, Merico D, Nalpathamkalam T, Thiruvahindrapuram B, Thompson A, Uddin M, Walker S, Luo J, Anagnostou E, Zwaigenbaum L, Ring RH, Wang J, Lajonchere C, Shih A, Szatmari P, Yang H, Dawson G, Li Y, Scherer SW (2013) Detection of clinically relevant genetic variants in autism spectrum disorder by whole-genome sequencing. Am J Hum Genet 93:249-63View Article PubMed Central PubMed
    Jovelin R, Cutter AD (2013) Fine-scale signatures of molecular evolution reconcile models of indel-associated mutation. Genome Biol Evol 5:978-86View Article PubMed Central PubMed
    Keskin H, Shen Y, Huang F, Patel M, Yang T, Ashley K, Mazin AV, Storici F (2014) Transcript-RNA-templated DNA recombination and repair. Nature 515:436-39View Article PubMed
    Kidd JM, Graves T, Newman TL, Fulton R, Hayden HS, Malig M, Kallicki J, Kaul R, Wilson RK, Eichler EE (2010) A human genome structural variation sequencing resource reveals insights i
  • 作者单位:Ye Wang (1) (2)
    Peiqiang Su (2)
    Bin Hu (1)
    Wenjuan Zhu (3)
    Qibin Li (3)
    Ping Yuan (1) (4)
    Jiangchao Li (5) (6)
    Xinyuan Guan (5) (7)
    Fucheng Li (1)
    Xiangyi Jing (1) (8)
    Ru Li (8)
    Yongling Zhang (8)
    Claude Férec (10) (11) (12) (9)
    David N. Cooper (13)
    Jun Wang (14) (3)
    Dongsheng Huang (15)
    Jian-Min Chen (10) (11) (9)
    Yiming Wang (1) (3)

    1. Department of Medical Genetics, Zhongshan School of Medicine and Center for Genome Research, Sun Yat-Sen University, Guangzhou, 510080, China
    2. Department of Orthopedics, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
    3. Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China
    4. Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
    5. State Key Laboratory of Oncology in Southern China, Cancer Center, Sun Yat-Sen University, Guangzhou, 510060, China
    6. Vascular Biology Research Institute, Guangdong Pharmaceutical University, Guangzhou, 510006, China
    7. Department of Clinical Oncology, The University of Hong Kong, Hong Kong, 999077, China
    8. Prenatal Diagnostic Center, Guangzhou Women and Children Medical Center affiliated to Guangzhou Medical University, Guangzhou, 510623, China
    10. Etablissement Fran?ais du Sang (EFS) - Bretagne, 29218, Brest, France
    11. Faculté de Médecine et des Sciences de la Santé, Université de Bretagne Occidentale (UBO), 29238, Brest, France
    12. Laboratoire de Génétique Moléculaire et d’Histocompatibilité, Centre Hospitalier Universitaire (CHU) Brest, H?pital Morvan, 29609, Brest, France
    9. Institut National de la Santé et de la Recherche Médicale (INSERM), U1078, 29218, Brest, France
    13. Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
    14. Department of Biology, University of Copenhagen, Copenhagen, Denmark
    15. Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Human Genetics
    Molecular Medicine
    Internal Medicine
    Metabolic Diseases
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-1203
文摘
Copy number variations (CNVs) have increasingly been reported to cause, or predispose to, human disease. However, a large fraction of these CNVs have not been accurately characterized at the single-base-pair level, thereby hampering a better understanding of the mutational mechanisms underlying CNV formation. Here, employing a composite pipeline method derived from various inference-based programs, we have characterized 26 deletion CNVs [including three novel pathogenic CNVs involving an autosomal gene (EXT2) causing hereditary osteochondromas and an X-linked gene (CLCN5) causing Dent disease, as well as 23 CNVs previously identified by inference from a cohort of Canadian autism spectrum disorder families] to the single-base-pair level of accuracy from whole-genome sequencing data. We found that breakpoint-flanking micro-mutations (within 22?bp of the breakpoint) are present in a significant fraction (5/26; 19?%) of the deletion CNVs. This analysis also provided evidence that a recently described error-prone form of DNA repair (i.e., repair of DNA double-strand breaks by templated nucleotide sequence insertions derived from distant regions of the genome) not only causes human genetic disease but also impacts on human genome evolution. Our findings illustrate the importance of precise CNV breakpoint delineation for understanding the underlying mutational mechanisms and have implications for primer design in relation to the detection of deletion CNVs in clinical diagnosis.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700