Preparation method of Ce1−x Zr x O2/tourmaline nanocomposite with high far-infrared emissivity and its mechanism
详细信息    查看全文
  • 作者:Bin Guo ; Liqing Yang ; Wenlong Li ; Haojing Wang ; Hong Zhang
  • 刊名:Applied Physics A: Materials Science & Processing
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:122
  • 期:2
  • 全文大小:1,219 KB
  • 参考文献:1.F.C. Hawthorne, D.J. Henry, Eur. J. Mineral. 11, 201 (1999)CrossRef
    2.S. Yamaguchi, Appl. Phys. A 31, 183 (1983)CrossRef ADS
    3.F.S. Lameiras, E.H.M. Nunes, J.M. Leal, Ferroelectrics 377, 107 (2008)CrossRef
    4.R.V. Dietrich, The Tourmaline Group (Van Nostrand Reinhold Company Inc, New York, 1985), pp. 13, 164–175CrossRef
    5.D.B. Zhu, J.S. Liang, Y. Ding, A.P. Xu, J. Nanosci. Nanotechnol. 10, 1676 (2010)CrossRef
    6.D.B. Zhu, J.S. Liang, Y. Ding, G. Xue, L.H. Liu, J. Am. Ceram. Soc. 91(8), 2588 (2008)CrossRef
    7.Y. Hamada, F. Teraoka, T. Matsumoto, A. Madachi, F. Toki, E. Uda, R. Hase, J. Takahashi, N. Matsuura, Int. Congress Ser. 1255, 339 (2003)CrossRef
    8.C. Castañeda, S.G. Eeckhout, G.M. Costa, N.F. Botelho, E.D. Grave, Phys. Chem. Miner. 33, 207 (2006)CrossRef ADS
    9.Z.J. Ji, Studies on the spontaneous polarity of tourmaline and its applied foundation. Ph. D. Dissertation, China Building Materials Academy, Beijing, 2003
    10.A. Trovarelli, C. de Leitenburg, G. Dolcetti, Chemtech 27, 32 (1997)
    11.B.M. Reddy, A. Khan, Catal. Surv. Asia 9, 155 (2005)CrossRef
    12.A. Trovarelli, Comments Inorg. Chem. 20(4–6), 263 (1999)CrossRef
    13.P. Fornasiero, G. Balducci, R. di Monte, J. Kaspar, V. Sergo, G. Gubitosa, A. Ferrero, M. Graziani, J. Catal. 164, 173 (1996)CrossRef
    14.T. Murota, T. Hasegawa, S. Aozasa, H. Matsui, M. Motoyama, J. Alloys Compd. 193, 298 (1993)CrossRef
    15.K. Otsuka, Y. Wang, M. Nakamura, Appl. Catal. A 183, 317 (1999)CrossRef
    16.B. Guo, L.Q. Yang, W.J. Hu, W.L. Li, H.J. Wang, Mod. Phys. Lett. B 29, 1550183 (2015)CrossRef ADS
    17.S.J. Roosendaal, B.V. Asselen, J.W. Elsenaar, A.M. Vredenberg, F.H.P.M. Habraken, Surf. Sci. 442, 329 (1999)CrossRef ADS
    18.P.C.J. Graat, M.A.J. Somers, Appl. Surf. Sci. 100/101, 36 (1996)CrossRef ADS
    19.F. Larachi, J. Pierre, A. Adnot, A. Bernis, Appl. Surf. Sci. 195, 236 (2002)CrossRef ADS
    20.S. Letichevsky, C.A. Tellez, R.D. Avillez, M.I.P.D. Silva, M.A. Fraga, L.G. Appel, Appl. Catal. B Environ. 58, 203 (2005)CrossRef
    21.P. Fornasiero, R.D. Monte, G.R. Rao, J. Kašpar, S. Meriani, A. Trovarelli, M. Graziani, J. Catal. 151, 168 (1995)CrossRef
    22.P. Riess, G. Rose, Über die pyroelektricität der mineralien, Abhandlungen der akademie der wissenschaften (Berlin) 59 (1843)
  • 作者单位:Bin Guo (1) (2)
    Liqing Yang (1)
    Wenlong Li (1) (2)
    Haojing Wang (1)
    Hong Zhang (1)

    1. State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an, 710119, China
    2. University of Chinese Academy of Sciences, Beijing, 100049, China
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Condensed Matter
    Optical and Electronic Materials
    Nanotechnology
    Characterization and Evaluation Materials
    Surfaces and Interfaces and Thin Films
    Operating Procedures and Materials Treatment
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0630
文摘
Far-infrared functional nanocomposites were prepared by the coprecipitation method using natural tourmaline (XY3Z6Si6O18(BO3)3V3W, where X is Na+, Ca2+, K+, or vacancy; Y is Mg2+, Fe2+, Mn2+, Al3+, Fe3+, Mn3+, Cr3+, Li+, or Ti4+; Z is Al3+, Mg2+, Cr3+, or V3+; V is O2−, OH−; and W is O2−, OH−, or F−) powders, ammonium cerium(IV) nitrate and zirconium(IV) nitrate pentahydrate as raw materials. The reference sample tourmaline modified with ammonium cerium(IV) nitrate alone was also prepared by a similar precipitation route. The results of Fourier transform infrared spectroscopy show that Ce–Zr can further enhance the far-infrared emission properties of tourmaline than Ce alone. Through characterization by X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS), the mechanism by which Ce(–Zr) acts on the far-infrared emission property of tourmaline was systematically studied. The XPS spectra show that the Fe3+ ratio inside tourmaline powders after heat treatment can be raised by doping Ce and further raised after adding Zr. Moreover, it is showed that Ce3+ is dominant inside the samples, but its dominance is replaced by Ce4+ outside. In addition, XRD results indicate the formation of CeO2 and Ce1−lic ">x Zr x O2 crystallites during the heat treatment, and further, TEM observations show they exist as nanoparticles on the surface of tourmaline powders. Based on these results, we attribute the improved far-infrared emission properties of Ce–Zr-doped tourmaline to the enhanced unit cell shrinkage of the tourmaline arisen from much more oxidation of Fe2+ (0.074 nm in radius) to Fe3+ (0.064 nm in radius) inside the tourmaline caused by Zr enhancing the redox shift between Ce4+ and Ce3+ via improving the oxygen mobility in the Ce–Zr crystal.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700