Structure, properties and rheological behavior of thermoplastic poly(lactic acid)/quaternary fulvic acid-intercalated saponite nanocomposites
详细信息    查看全文
  • 作者:Weijun Zhen ; Wentao Wang
  • 关键词:Saponite ; Fulvic acid ; Poly(lactic acid) ; Nanocomposites ; Melt processing ; Properties
  • 刊名:Polymer Bulletin
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:73
  • 期:4
  • 页码:1015-1035
  • 全文大小:1,652 KB
  • 参考文献:1.Yu L, Dean K, Li L (2006) Polymer blends and composites from renewable resources. Prog Polyme Sci 6:576–602CrossRef
    2.Wang L, Cheng S, Zhuo R (2014) Syntheses and properties of novel copolymers of polycaprolactone and aliphatic polycarbonate based on ketal-protected dihydroxyacetone. Polym Bull 1:47–56CrossRef
    3.Dadbin S, Naimian F, Akhavan A (2011) Poly (lactic acid)/layered silicate nanocomposite films: morphology, mechanical properties, and effects of γ-radiation. J Appl Polym Sci 1:142–149CrossRef
    4.Perego G, Cella GD, Bastioli C (1996) Effect of molecular weight and crystallinity on poly (lactic acid) mechanical properties. J Appl Polym Sci 1:37–43CrossRef
    5.Gattin R, Copinet A, Bertrand C, Coutuier Y (2003) Biodegradation study of a coextruded starch and poly (lactic acid) material in various media. J Appl Polym Sci 3:825–831CrossRef
    6.Ali F, Chang YW, Kang SC, Yoon Yong J (2009) Thermal, mechanical and rheological properties of poly (lactic acid)/epoxidized soybean oil blends. Polym Bull 1:91–98CrossRef
    7.Harris AM, Lee EC (2008) Improving mechanical performance of injection molded PLA by controlling crystallinity. J Appl Polym Sci 107:2246–2255CrossRef
    8.Yuan Y, Ruckenstein E (1998) Polyurethane toughened polylactide. Polym Bull 4–5:485–490CrossRef
    9.Picard E, Espuche E, Fulchiron R (2011) Effect of an organo-modified montmorillonite on PLA crystallization and gas barrier properties. Appl Clay Sci 1:58–65CrossRef
    10.Su ZZ, Guo WH, Liu YJ, Li QY, Wu CF (2009) Non-isothermal crystallization kinetics of poly (lactic acid)/modified carbon black composite. Polym Bull 5:629–642CrossRef
    11.Nunez K, Rosales C, Perera R, Villarreal N, Pastor JM (2011) Nanocomposites of PLA/PP blends based on sepiolite. Polym Bull 9:1991–2016CrossRef
    12.Ahmadi SJ, Huang YD, Li W (2004) Synthetic routes, properties and future applications of polymer-layered silicate nanocomposites. J Mater Sci 39:1919–1925CrossRef
    13.Shen Z, Simon GP, Cheng YB (2002) Comparison of solution intercalation and melt intercalation of polymer–clay nanocomposites. Polymer 15:4251–4260CrossRef
    14.Pandey JK, Raghunatha Reddy K, Pratheep Kumar A, Sinch RP (2005) An overview on the degradability of polymer nanocomposites. Polym Degrad Stabil 2:234–250CrossRef
    15.Su XF, Zhang G, Xu K, Wang CL, Wang PX (2008) The effect of MMT/modified MMT on the structure and performance of the superabsorbent composite. Polym Bull 1:69–78CrossRef
    16.Paul MA, Alexandre M, Degee P, Henrist C, Rulmont A, Dubois P (2003) New nanocomposite materials based on plasticized poly (l -lactide) and organo-modified montmorillonites: thermal and morphological study. Polymer 2:443–450CrossRef
    17.Leu YY, Mohd Ishak ZA, Chow WS (2012) Mechanical, thermal, and morphological properties of injection molded poly (lactic acid)/SEBS-g-MAH/organo-montmorillonite nanocomposites. J Appl Polym Sci 2:1200–1207CrossRef
    18.Lee JW, Lim YT, Park OO (2000) Thermal characteristics of organoclay and their effects upon the formation of polypropylene/organoclay nanocomposites. Polym Bull 2:191–198CrossRef
    19.Katti KS, Sikdar D, Katti DR, Ghosh P, Verna D (2006) Molecular interactions in intercalated organically modified clay and clay-polycaprolactam nanocomposites: experiments and modeling. Polymer 1:403–414CrossRef
    20.Hayes MHB, Clapp CE (2001) Humic substances: considerations of compositions, aspects of structure, and environmental influences. Soil Sci 11:723–737CrossRef
    21.MacCarthy P (2001) The principles of humic substances. Soil Sci 11:738–751CrossRef
    22.Stevenson IL, Schnitzer M (1982) Transmission electron microscopy of extracted fulvic and humic acids 1. Soil Sci 3:179–185CrossRef
    23.Gondar D, Lopez R, Fiol S, Antelo JM, Arce F (2005) Characterization and acid–base properties of fulvic and humic acids isolated from two horizons of an ombrotrophic peat bog. Geoderma 3:367–374CrossRef
    24.Sierra MMD, Giovanela M, Parlanti E, SorianoSierra EJ (2005) Fluorescence fingerprint of fulvic and humic acids from varied origins as viewed by single-scan and excitation/emission matrix techniques. Chemosphere 6:715–733CrossRef
    25.Islam KMS, Schuhmacher A, Gropp JM (2005) Humic acid substances in animal agriculture. Pakistan J Nutr 3:126–134
    26.Trckova M, Matlova L, Hudcova H, Faldyna M, Zraly Z, Dvorska L, Beran V, Pavlik I (2005) Peat as a feed supplement for animals: a review. Vet Med 50:361–377
    27.Van Rensburg CEJ, Malfeld SCK, Dekker J (2001) Topical application of oxifulvic acid suppresses the cutaneous immune response in mice. Drug Develop Res 1:29–32CrossRef
    28.Lagaly G, Dekany I (2005) Adsorption on hydrophobized surfaces: clusters and self-organization. Adv Colloid Interface Sci 114–115:189–204CrossRef
    29.Brown JM, Curliss D, Vaia RA (2000) Thermoset-layered silicate nanocomposites. Quaternary ammonium montmorillonite with primary diamine cured epoxies. Chem Mater 12:3376–3384CrossRef
    30.Li Y, Ishida H (2003) Concentration-dependent conformation of alkyl tail in the nanoconfined space: hexadecylamine in the silicate galleries. Langmuir 6:2479–2484CrossRef
    31.Tsou CH, Suen MC, Yao WH, Yeh JT, Wu CS, Tsou CY, Chiu SH, Chen JC, Wang RY, Lin SM, Hung WS, Guzman MD, Hu CC, Lee KR (2014) Preparation and characterization of bioplastic-based green renewable composites from tapioca with acetyl tributyl citrate as a plasticizer. Materials 8:5617–5632CrossRef
    32.Jia QM, Zheng M, Chen HX, Shen RJ (2005) Synthesis and characterization of polyurethane/epoxy interpenetrating network nanocomposites with organoclays. Polym Bull 1–2:65–73CrossRef
    33.LeBaron PC, Wang Z, Pinnavaia TJ (1999) Polymer-layered silicate nanocomposites: an overview. J Appl Clay Sci 15:11–29CrossRef
    34.Mathew AP, Oksman K, Sain M (2005) Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). J Appl Polym Sci 97:2014–2025CrossRef
    35.Aslzadeh MM, Abdouss M, Sadeghi GMM (2013) Preparation and characterization of new flame retardant polyurethane composite and nanocomposite. J Appl Polym Sci 3:1683–1690CrossRef
    36.Barick AK, Tripathy DK (2010) Preparation and characterization of thermoplastic polyurethane/organoclay nanocomposites by melt intercalation technique: effect of nanoclay on morphology, mechanical, thermal, and rheological properties. J Appl Polym Sci 2:639–654CrossRef
    37.Cheng S, Lau K, Liu T, Zhao YQ, Lam PM, Yin YS (2009) Mechanical and thermal properties of chicken feather fiber/PLA green composites. Composites Part B: Eng 40:650–654CrossRef
    38.Chow WS, Lok SK (2009) Thermal properties of poly (lactic acid)/organo-montmorillonite nanocomposites. J Therm Anal Calorim 95:627–632CrossRef
    39.Song P, Chen GY, Wei ZY, Zhang WX, Liang JC (2012) Rapid crystallization of poly (l -lactic acid) induced by a nanoscaled zinc citrate complex as nucleating agent. Polymer 19:4300–4309CrossRef
    40.Lopez RG, Trevino ME, Salazar LV, Peralta RD, Becerra F, Puig JE, Mendizabal E (1997) Polymerization of vinyl acetate in ternary microemulsions stabilized with hexadecyltrimethylammonium bromide. Polym Bull 4:411–417CrossRef
    41.Sathe SN, Devi S, Srinivasa Rao GS, Rao KV (1996) Relationship between morphology and mechanical properties of binary and compatibilized ternary blends of polypropylene and nylon 6. J Appl Polym Sci 61:97–107CrossRef
    42.Sathe SN, Srinivasa Rao GS, Rao KV, Devi S (1996) The effect of composition on morphological, thermal, and mechanical properties of polypropylene/nylon-6/polypropylene-g-butyl acrylate blends. J Eng Sci 36:2443–2450
    43.Li B, Dong FX, Wang XL, Yang J, Wang DY, Wang YZ (2009) Organically modified rectorite toughened poly (lactic acid): nanostructures, crystallization and mechanical properties. Euro Polym J 11:2996–3003CrossRef
    44.Chow WS, Neoh SS (2009) Mechanical, morphological and thermal properties of polycarbonate/SEBS-G-MA/montmorillonite nanocomposites. Polym-Plast Technol Eng 49:62–68CrossRef
    45.Ray SS, Yamada K, Okamoto M, Ueda K (2003) Control of biodegradability of polylactide via nanocomposite technology. Macromol Mater Eng 3:203–208CrossRef
    46.Pluta M, Jeszka JK, Boiteux G (2007) Polylactide/montmorillonite nanocomposites: structure, dielectric, viscoelastic and thermal properties. Euro Polym J 7:2819–2835CrossRef
    47.Iannace S, Sabatini G, Ambrosio L, Nicolais L (1995) Mechanical behavior of composite artificial tendons and ligaments. Biomaterials 9:675–680CrossRef
    48.Ray SS, Okamoto M (2003) Biodegradable polylactide and its nanocomposites: opening a new dimension for plastics and composites. Macromol Rapid Commun 14:815–840CrossRef
    49.Lertwimolnun W, Vergnes B (2005) Influence of compatibilizer and processing conditions on the dispersion of nanoclay in a polypropylene matrix. Polymer 10:3462–3471CrossRef
  • 作者单位:Weijun Zhen (1)
    Wentao Wang (1)

    1. Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uygur Autonomous Region, Xinjiang University, Ürümqi, 830046, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Polymer Sciences
    Characterization and Evaluation Materials
    Soft Matter and Complex Fluids
    Physical Chemistry
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1436-2449
文摘
Sodium humate was oxidized with nitric acid to obtain fulvic acid (FA), which was further quaternized to obtain quaternary fulvic acid (QFA). QFA-intercalated saponite (QFA-saponite) was prepared ultrasonically. Thermoplastic poly(lactic acid) (PLA)/quaternary fulvic acid-intercalated saponite nanocomposites were prepared by melt intercalation technique. The morphology and dispersion of QFA-saponite were investigated by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Mechanical properties, thermal stability and crystallization behavior of PLA/QFA-saponite nanocomposites were also tested. Results showed a predominantly flocculated structure and partially intercalated morphology for QFA-saponite. Mechanical testing and thermogravimetric analysis showed that the tensile strength, impact properties, and thermostability of PLA/QFA-saponite nanocomposites improved significantly compared to pure PLA. Differential scanning calorimetry results showed that crystallinity of PLA increased from 22.5 to 68.3 % on addition of QFA-saponite. Polarized optical microscopy showed QFA-saponite as a nucleating agent for PLA that enhanced its crystallization rate. Rotational rheological behaviors of PLA/QFA-saponite nanocomposites demonstrated that incorporation of QFA-saponite increased rigidity of the network structure in PLA matrix.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700