The direct transformation of ethanol to ethyl acetate over Cu/SiO 2 catalysts that contain copper phyllosilicate
详细信息    查看全文
  • 作者:XUE YU (1)
    SHUBO ZHAI (3)
    WANCHUN ZHU (1)
    SHUANG GAO (1)
    JIANBIAO YAN (1)
    HONGJING YUAN (1)
    LILI CHEN (1)
    JIAHUAN LUO (2)
    WENXIANG ZHANG (1)
    ZHENLU WANG (1)
  • 关键词:Ethanol ; ethyl acetate ; copper phyllosilicate ; lewis acid sites
  • 刊名:Journal of Chemical Sciences
  • 出版年:2014
  • 出版时间:July 2014
  • 年:2014
  • 卷:126
  • 期:4
  • 页码:1013-1020
  • 全文大小:1,067 KB
  • 参考文献:1. Colley S W, Tabatabaei J, Waugh K C and Wood M A 2005 / J. Catal. 236 21
    2. Inui K, Kurabayashi T and Sato S 2002 / Appl. Catal., A 237 53
    3. Inui K, Kurabayashi T and Sato S 2002 / J. Catal. 212 207
    4. Inui K, Kurabayashi T, Sato S and Ichikawa N 2004 / J. Mol. Catal. A: Chem. 216 147
    5. Zonetti P C, Celnik J, Letichevsky S, Gaspar A B and Appel L G 2011 / J. Mol. Catal. A: Chem. 334 29
    6. Wang L X, Zhu W C, Zheng D F, Yu X, Cui J, Jia M, Zhang W X and Wang Z L 2010 / Reac. Kinet. Mech. Cat. 101 365
    7. Ji Chan Park H J L, Jung Up Bang, Kang Hyun Park and Hyunjoon Song 2009 / Chem. Commun. 7345
    8. Zhang B, Hui S, Zhang S, Ji Y, Li W and Fang D 2012 / J. Nat. Gas Chem. 21 563
    9. Che M, Cheng Z X and Louis C 1995 / J. Am. Chem. Soc. 117 2008
    10. Burattin P, Che M and Louis C 1997 / J. Phys. Chem. B 101 7060
    11. Fonseca M G and Airoldi C 2000 / Thermochim. Acta 359 1
    12. Lagadic I L, Mitchell M K and Payne B D 2001 / Environ. Sci. Technol. 35 984
    13. Mhamdi M, Marceau E, Khaddar-Zine S, Ghorbel A, Che M, Taarit Y and Villain F 2004 / Catal. Lett. 98 135
    14. Loaiza-Gil A, Arenas J, Villarroel M, Imbert F, del Castillo H and Fontal B 2005 / J. Mol. Catal. A: Chem. 228 339
    15. Schlegel M L and Manceau A 2006 / Geochim. Cosmochim. Acta 70 901
    16. Toupance T, Kermarec M and Louis C 2000 / J. Phys. Chem. B 104 965
    17. Toupance T, Kermarec M, Lambert J-F and Louis C 2002 / J. Phys. Chem. B 106 2277
    18. Huang Z, Cui F, Xue J, Zuo J, Chen J and Xia C 2010 / J. Phys. Chem. C 114 16104
    19. Chen L-F, Guo P-J, Qiao M-H, Yan S-R, Li H-X, Shen W, Xu H-L and Fan K-N 2008 / J. Catal. 257 172
    20. Zhao L, Zhao Y, Wang S, Yue H, Wang B, Lv J and Ma X 2012 / Ind. Eng. Chem. Res. 51 13935
    21. Yin A, Guo X, Dai W-L and Fan K 2011 / Catal. Commun. 12 412
    22. Gong J, Yue H, Zhao Y, Zhao S, Zhao L, Lv J, Wang S and Ma X 2012 / J. Am. Chem. Soc. 134 13922
    23. Pu Z-Y, Liu X-S, Jia A-P, Xie Y-L, Lu J-Q and Luo M-F 2008 / J. Phys. Chem. C 112 15045
    24. Zhu X, Li X, Jia M, Liu G, Zhang W and Jiang D 2005 / Appl. Catal., A 282 155
    25. Su W G, Wang S G, Ying P L, Feng Z C and Li C 2009 / J. Catal. 268 165
    26. Chen C-S. Chen C-S, You J-H, Lin J-H and Chen Y-Y 2008 / Catal. Commun. 9 2381
    27. Zhu Y-Y, Wang S-R, Zhu L-J, Ge X-L, Li X-B and Luo Z-Y 2010 / Catal. Lett. 135 275
    28. Marchi A J, Fierro J L G, Santamar铆a J and Monz贸n A 1996 / Appl. Catal., A 142 375
    29. Ghodselahi T, Vesaghi M A, Shafiekhani A, Baghizadeh A and Lameii M 2008 / Appl. Surf. Sci. 255 2730
    30. Huang Z, Cui F, Xue J, Zuo J, Chen J and Xia C 2012 / Catal. Today 183 42
    31. Ji D H, Zhu W C, Wang Z L and Wang G 2007 / Catal. Commun. 8 1891
    32. Matter P H and Ozkan U S 2005 / J. Catal. 234 463
    33. Agrell J, Birgersson H, Boutonnet M, Meli谩n-Cabrera I, Navarro R M and Fierro J L G 2003 / J. Catal. 219 389
    34. Chen X R, Ju Y H and Mou C Y 2007 / J. Phys. Chem. C 111 18731
    35. Turco M, Bagnasco G, Cammarano C, Senese P, Costantino U and Sisani M 2007 / Appl. Catal., B 77 46
    36. Zhang Y Q, Wang S J, Wang J W, Lou L L, Zhang C and Liu S X 2009 / Solid State Sci. 11 1412
    37. Zhang B, Zhu Y, Ding G, Zheng H and Li Y 2012 / Appl. Catal., A 443 191
    38. Chen L F, Nore帽a L E, Navarrete J and Wang J A 2006 / Mater. Chem. Phys. 97 236
    39. Jia A Z, Li J, Zhang Y Q, Song Y J and Liu S X 2008 / Mater. Sci. Eng., C 28 1217
    40. Tonner S P, Trimm D L, Wainwright M S and Cant N W 1984 / Ind. Eng. Chem. Prod. Res. Dev. 23 384
    41. Crivello M E, P茅rez C F, Mendieta S N, Casuscelli S G, Eimer G A, El铆as V R and Herrero E R 2008 / Catal. Today 133 787
    42. Zhu W C, Wang L X, Liu S Y and Wang Z 2008 / React. Kinet. Catal. Lett. 93 93
    43. Gong Y, Dou T, Kang S, Li Q and Hu Y 2009 / Fuel Process. Technol. 90 122
    44. Benaliouche F, Boucheffa Y and Thibault-Starzyk F 2012 / Microporous Mesoporous Mater. 147 10
  • 作者单位:XUE YU (1)
    SHUBO ZHAI (3)
    WANCHUN ZHU (1)
    SHUANG GAO (1)
    JIANBIAO YAN (1)
    HONGJING YUAN (1)
    LILI CHEN (1)
    JIAHUAN LUO (2)
    WENXIANG ZHANG (1)
    ZHENLU WANG (1)

    1. Key Laboratory of Surface and Interface Chemistry of Jilin Province, College of Chemistry, Jilin University, Changchun, 130021, People鈥檚 Republic of China
    3. First Hospital of Jilin University, Changchun, 130021, People鈥檚 Republic of China
    2. State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, People鈥檚 Republic of China
  • ISSN:0973-7103
文摘
Cu/SiO2 catalysts that contain copper phyllosilicate, were successfully prepared using the ammonia-evaporation method. The catalysts were characterized via XRD, ICP, BET, FTIR, TPR, XPS, NH3-TPD and FTIR of Pyridine Adsorption techniques. The results demonstrated that the formation of the copper phyllosilicate species significantly affected the structural properties and caused the CuO nanoparticles to become highly dispersed, and the copper phyllosilicate would provide access to the Lewis acidic Cu+ species. It was found that the catalyst with a 23.7 wt% copper loading exhibited the best ethanol conversion and ethyl acetate selectivity. When compared to a catalyst with the same copper loading which was prepared with the impregnation method, the higher activity and selectivity of catalysts might be ascribed to the homogenous distribution of copper nanoparticles, which was the active site for the dehydrogenation, and the amount of Lewis acidic Cu+ sites active for esterification. The synergetic effect between the Cu0 and Lewis acidic sites was the key factor to achieve direct transformation of ethanol to ethyl acetate. Graphical Abstract Cu/SiO2 catalysts, which contain copper phyllosilicate, were successfully prepared using the ammonia-evaporation method. Copper phyllosilicate species caused the CuO nanoparticles to become highly dispersed, and they would provide access to the Lewis acidic Cu+ species. Synergetic effect between Cu0 and Lewis acidic sites was the key factor for the reaction.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700