Rational design and molecular engineering of peptide aptamers to target human pancreatic trypsin in acute pancreatitis
详细信息    查看全文
  • 作者:Weiyi Shao ; Wenxian Zhu ; Yanhua Wang…
  • 关键词:human pancreatic trypsin ; molecular engineering ; peptide aptamer ; acute pancreatitis
  • 刊名:Biotechnology and Bioprocess Engineering
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:21
  • 期:1
  • 页码:144-152
  • 全文大小:630 KB
  • 参考文献:1.Steinberg, W. and S. Tenner (1994) Acute pancreatitis. New Engl. J. Med. 330: 1198–1210.CrossRef
    2.Fagenholz, P. J., C. Fernández-del Castillo, N. S. Harris, A. J. Pelletier, and C. A. Camargo (2007) Direct medical costs of acute pancreatitis hospitalizations in the United States. Pancreas 35: 302–307.CrossRef
    3.Yadav, D. and A. B. Lowenfels (2006) Trends in the epidemiology of the first attack of acute pancreatitis: A systematic review. Pancreas 33: 323–330.CrossRef
    4.Tenner, S., J. Baillie, J. DeWitt, and S. S. Vege (2013) American College of Gastroenterology guideline: Management of acute pancreatitis. Am. J. Gastroenterol. 108: 1400–1415.CrossRef
    5.Tenner, S. and P. A. Banks (1997) Acute pancreatitis: Nonsurgical management. World J. Surg. 21: 143–148.CrossRef
    6.Bassi, C., M. Falconi, E. Caldiron, R. Salvia, N. Sartori, G. Butturini, C. Contro, S. Marcucci, L. Casetti, and P. Pederzoli (1999) Assessment and treatment of severe pancreatitis protease inhibitor. Digestion 60: 5–8.CrossRef
    7.Li, Y., Q. Huang, S. Zhang, S. Liu, C. Chi, and Y. Tang (1994) Studies on an artificial trypsin inhibitor peptide derived from the mung bean trypsin inhibitor: chemical synthesis, refolding, and crystallographic analysis of its complex with trypsin. J. Biochem. 116: 18–25.
    8.Guo, C. T., S. McClean, C. Shaw, P. F. Rao, M. Y. Ye, and A. J. Bjourson (2013) Trypsin and chymotrypsin inhibitor peptides from the venom of Chinese Daboia russellii siamensis. Toxicon 63: 154–164.CrossRef
    9.Smith, G. P. and V. A. Petrenko (1997) Phage display. Chem. Rev. 97: 391–410.CrossRef
    10.Szardenings, M. (2003) Phage display of random peptide libraries: Applications, limits, and potential. J. Recept. Signal. Transduct. Res. 23: 307–349.CrossRef
    11.Zhou, P., C. Wang, Y. Ren, C. Yang, and F. Tian (2013) Computational peptidology: A new and promising approach to therapeutic peptide design. Curr. Med. Chem. 20: 1985–1996.CrossRef
    12.Gaboriaud, C., L. Serre, O. Guy-Crotte, E. Forest, and J. C. Fontecilla-Camps (1996) Crystal structure of human trypsin 1: Unexpected phosphorylation of Tyr151. J. Mol. Biol. 259: 995–1010.CrossRef
    13.Salameh, M. A., A. S. Soares, A. Hockla, and E. S. Radisky (2008) Structural basis for accelerated cleavage of bovine pancreatic trypsin inhibitor (BPTI) by human mesotrypsin. J. Biol. Chem. 283: 4115–4123.CrossRef
    14.Polgár, L. (2005) The catalytic triad of serine peptidases. Cell Mol. Life Sci. 62: 2161–2172.CrossRef
    15.Colwell, L. J., B. P. Brenner, and A. W. Murray (2014) Conservation weighting functions enable covariance analyses to detect functionally important amino acids. PLoS ONE 9: e107723.CrossRef
    16.Wang, P., Y. Li, Q. Shao, W. Zhou, and K. Wang (2015) Targeting human secretory phospholipase A2 with designed peptide inhibitors for inflammatory therapy. J. Drug Target. 2: 140–146.CrossRef
    17.Berman, H. M., J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov, and P. E. Bourne (2000) The protein data bank. Nucleic Acids Res. 28: 235–242.CrossRef
    18.Ibrahim, S. B. and V. Pattabhi (2005) Trypsin inhibition by a peptide hormone: Crystal structure of trypsin-vasopressin complex. J. Mol. Biol. 348: 1191–1198.CrossRef
    19.Li, J., C. Zhang, X. Xu, J. Wang, H. Yu, R. Lai, and W. Gong (2007) Trypsin inhibitory loop is an excellent lead structure to design serine protease inhibitors and antimicrobial peptides. FASEB J. 21: 2466–2473.CrossRef
    20.Word, J. M., S. C. Lovell, J. S. Richardson, and D. C. Richardson (1999) Asparagine and glutamine: Using hydrogen atom contacts in the choice of side-chain amide orientation. J. Mol. Biol. 285: 1735–1747.CrossRef
    21.Rostkowski, M., M. H. Olsson, C. R. Søndergaard, and J. H. Jensen (2011) Graphical analysis of pH-dependent properties of proteins predicted using PROPKA. BMC Struct. Biol. 11: 6.CrossRef
    22.Chen, R., L. Li, and Z. Weng (2003) ZDOCK: An initial-stage protein-docking algorithm. Proteins 52: 80–87.CrossRef
    23.London, N., B. Raveh, E. Cohen, G. Fathi, and O. Schueler-Furman (2011) Rosetta FlexPepDock web server––high resolution modeling of peptide–protein interactions. Nucleic Acids Res. 39: W249–W253.CrossRef
    24.Raveh, B., N. London, and O. Schueler-Furman (2010) Sub-angstrom modeling of complexes between flexible peptides and globular proteins. Proteins 78: 2029–2040.
    25.Duan, Y., C. Wu, S. Chowdhury, M. C. Lee, G. M. Xiong, and W. Zhang (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J. Comput. Chem. 24: 1999–2012.CrossRef
    26.Zhou, P., S. Zhang, Y. Wang, C. Yang, and J. Huang (2015) Structural modeling of HLA-B*1502/peptide/carbamazepine/Tcell receptor complex architecture: implication for the molecular mechanism of carbamazepine-induced Stevens-Johnson syndrome/ toxic epidermal necrolysis. J. Biomol. Struct. Dyn. (In press, doi: 10.1080/07391102.2015.1092476).
    27.Darden, T., D. York, and L. Pedersen (1993) Particale mesh Ewald and N.log(N) method for Ewald sums in large systems. J. Chem. Phys. 98: 10089–10092.CrossRef
    28.Ryckaert, J., G. Ciccotti, and H. J. C. Berendsen (1997) Numerical-integration of cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 23: 327–341.CrossRef
    29.Kollman, P. A., I. Massova, C. Reyes, B. Kuhn, S. H. Huo, and L. Chong (2000) Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Acc. Chem. Res. 33: 889–897.CrossRef
    30.Case, D. (1994) Normal mode analysis of protein dynamics. Curr. Opin. Struct. Biol. 4: 285–290.CrossRef
    31.Hou, T., K. Chen, W. A. McLaughlin, B. Lu, and W. Wang (2006) Computational analysis and prediction of the binding motif and protein interacting partners of the Abl SH3 domain. PLoS Comput. Biol. 2: e1.CrossRef
    32.Song, G., M. Zhou, W. Chen, T. Chen, B. Walker, and C. Shaw (2008) HV-BBI––a novel amphibian skin Bowman-Birk-like trypsin inhibitor. Biochem. Biophys. Res. Commun. 372: 191–196.CrossRef
    33.Wang, M., L. Wang, T. Chen, B. Walker, M. Zhou, D. Sui, J. M. Conlon, and C. Shaw (2012) Identification and molecular cloning of a novel amphibian Bowman Birk-type trypsin inhibitor from the skin of the Hejiang Odorous Frog; Odorrana hejiangensis. Peptides 33: 245–250.CrossRef
    34.Morris, S. R. and J. A. Sakanari (1994) Characterization of the serine protease and serine protease inhibitor from the tissue-penetrating nematode Anisakis simplex. J. Biol. Chem. 269: 27650–27656.
    35.Pierce, B. G., K. Wiehe, H. Hwang, B. H. Kim, T. Vreven, and Z. Weng (2014) ZDOCK server: interactive docking prediction of protein-protein complexes and symmetric multimers. Bioinformatics 30: 1771–1773.CrossRef
    36.Word, J. M., S. C. Lovell, T. H. LaBean, H. C. Taylor, M. E. Zalis, B. K. Presley, J. S. Richardson, and D. C. Richardson (1999) Visualizing and quantifying molecular goodness-of-fit: Small-probe contact dots with explicit hydrogen atoms. J. Mol. Biol. 285: 1711–1733.CrossRef
    37.Stein, A. and P. Aloy (2008) Contextual specificity in peptidemediated protein interactions. PLoS ONE 3: e2524.CrossRef
    38.Wallace, A. C., P. A. Laskowski, and J. M. Thornton (1995) LIGPLOT: A program to generate schematic diagrams of proteinligand interactions. Protein Eng. 8: 127–134.CrossRef
    39.Moreira, I. S., P. A. Fernandes, and M. J. Ramos (2007) Computational alanine scanning mutagenesis––an improved methodological approach. J. Comput. Chem. 28: 644–654.CrossRef
    40.Bi, J., H. Yang, H. Yan, R. Song, and J. Fan (2011) Knowledgebased virtual screening of HLA-A*0201-restricted CD8+ T-cell epitope peptides from herpes simplex virus genome. J. Theor. Biol. 281: 133–139.CrossRef
    41.Xiang, Z. and B. Honig (2001) Extending the accuracy limits of prediction of side-chain conformations. J. Mol. Biol. 311: 421–430.CrossRef
    42.Zhou, P., J. Huang, and F. Tian (2012) Specific noncovalent interactions at protein-ligand interface: Implications for rational drug design. Curr. Med. Chem. 19: 226–238.CrossRef
  • 作者单位:Weiyi Shao (1)
    Wenxian Zhu (1)
    Yanhua Wang (1)
    Jingwei Lu (1)
    Ge Jin (1)
    Yixin Wang (1)
    Wenli Su (1)

    1. Emergency Surgery Department, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200-062, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
  • 出版者:The Korean Society for Biotechnology and Bioengineering
  • ISSN:1976-3816
文摘
Human pancreatic trypsin (hPT) is an established target for acute pancreatitis (AP) therapeutics. Here, a bioinformatics protocol of protein docking, peptide refinement, dynamics simulation and affinity analysis was described to perform rational design and molecular engineering of hPT peptide aptamers. Protein docking was employed to model the intermolecular interactions between hPT and its cognate inhibitory protein, the human pancreatic trypsin inhibitor (hTI). A number of peptide fragments were cut out from the interaction sites of docked hPT–hTI complexes, from which a decapeptide fragment 13LNGCTLEYRP22 was found to exhibit potent inhibition against hPT (K i = 5.3 ± 0.8 μM). We also carried out alanine scanning and virtual mutagenesis to systematically examine the independent contribution of peptide residues to binding affinity, and the harvested knowledge were then used to guide modification and optimization of the decapeptide fragment. Subsequently, inhibition studies of nine promising candidates against recombinant hPT were conducted, from which four samples were successfully identified to have high or moderate potency (K i < 10 μM). In particular, the peptides LQVCTLEYCN and LQICTLEYCT were found to inhibit hPT activity significantly (K i = 0.23 ± 0.04 and 0.85 ± 0.18 μM, respectively). Structural analysis of hPT–peptide complex systems unraveled diverse chemical interactions such as hydrogen bonds, salt bridges and hydrophobic forces across the complex interfaces.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700