Generation of a national landslide hazard and risk map for the country of Georgia
详细信息    查看全文
  • 作者:George Gaprindashvili ; Cees J. Van Westen
  • 关键词:Landslide ; National scale ; Susceptibility ; Vulnerability ; Qualitative risk ; SMCE ; Georgia
  • 刊名:Natural Hazards
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:80
  • 期:1
  • 页码:69-101
  • 全文大小:8,429 KB
  • 参考文献:AGSO (2001) Natural hazards and the risk they pose to South-East Queenland. AGSO-Geoscience Australia. Digital report on CD-ROM
    Aleotti P, Chowdhury R (1999) Landslide hazard assessment: summary. Rev N Perspect Bull Eng Geol Env 58:21–44CrossRef
    Alvioli M, Guzzetti F, Rossi M (2014) Scaling properties of rainfall induced landslides predicted by a physically based model. Geomorphology 213:38–47CrossRef
    Atlas of Georgia (1964) Institute of Geography of Georgia, Tbilisi, p 269
    Balteanu D, Chendeş V, Sima M, Enciu P (2010) A country-wide spatial assessment of landslide susceptibility in Romania. Geomorphology 124(3):102–112CrossRef
    Berti M, Genevois R, LaHusen R, Simoni A, Tecca PR (2000) Debris flow monitoring in the Acquabona watershed on the Dolomites (Italian Alps). Phys Chem Earth Part B Hydrol Oceans Atmos 25(9):707–715CrossRef
    Bonnard C, Forlati F, Scavia C (eds) (2004) Identification and mitigation of large landslide risk in Europe. Advances in risk assessment. IMIRILAND Project. A.A. Balkema Publishers, Leiden, p 317
    Cascini L, Bonnard Ch, Corominas J, Jibson R, Montero-Olarte J (2005) Landslide hazard and risk zoning for urban planning and development. In: Hungr O, Fell R, Couture R, Eberthardt E (eds) Landslide risk management. Taylor and Francis, Blair
    Castellanos Abella EA, van Westen CJ (2007) Generation of a landslide risk index map for Cuba using spatial multi-criteria evaluation. Landslides 4(4):311–325CrossRef
    Castellanos Abella EA, van Westen CJ (2008) Qualitative landslide susceptibility assessment by multi criteria analysis: a case study from San Antonio del Sur, Guantánamo, Cuba. Geomorphology 94(3–4):453–466CrossRef
    Catani F, Casagli N, Ermini L, Righini G, Menduni G (2005) Landslide hazard and risk mapping at catchment scale in the Arno River basin. Landslides 2(4):329–342CrossRef
    CENN/ITC (2014) Atlas of Natural Hazards and Risks of Georgia. http://​drm.​cenn.​org/​index.​php/​en/​background-information/​paper-atlas
    Cepeda J, Smebye H, Vangelsten B, Nadim F, Muslim D (2010) Landslide risk in Indonesia Global Assessment Report on disaster risk reduction
    Cepeda J, Schwendtner B, Quan Luna B, Díaz M, Molina G (2013) Landslide hazard and risk assessment in El Salvador. UNISDR global assessment Report 2013—GAR13
    Clerici A, Perego S, Tellini C, Vescovi P (2002) A procedure for landslide susceptibility zonation by the conditional analysis method. Geomorphology 48(4):349–364. doi:10.​1016/​S0169-555X(02)00079-X CrossRef
    Coe JA, Godt JW, Baum RL et al (2004) Landslide susceptibility from topography in Guatemala. In: Lacerda WA, Ehrlich M, Fontura SAB et al (eds) Landslides: evaluation and stabilization, vol 1. Taylor and Francis Group, London, pp 69–78
    Corominas J, van Westen CJ, Frattini P, Cascini L, Malet JP, Fotopoulou S, Catani F, van den Eeckhaut M, Mavrouli O, Agliardi F, Pitilakis K, Winter MG, Pastor M, Ferlisi S, Tofani V, Hervas J, Smith JT (2014) Recommendations for the quantitative analysis of landslide risk. Open access. Bull Eng Geol Env IAEG 73(2):209–263
    Cruden DM, Varnes DJ (1996) Landslide types and processes. In: Turner AT, Schuster RL (eds) Landslides investigation and mitigation. Transportation Research Board Special Report No. 247. National Academy Press, Washington, DC, pp 36–75
    Dai FC, Lee CF, Ngai YY (2002) Landslide risk assessment and management: an overview. Eng Geol 64(1):65–87CrossRef
    Delaunay J (1981) Carte de France des zones vulnèrables a des glissements, écroulements, affaissements et effrondrements de terrain. Bureau de Recherches Géologiques et Minières, 81 SGN 567 GEG (in French)
    DesInventar (2015) Inventory system of the effects of disasters. http://​online.​desinventar.​org/​
    Farahmand A, AghaKouchak A (2013) A satellite-based global landslide model. Nat Hazards Earth Syst Sci 13(5):1259–1267CrossRef
    Fuchs S, Heiss K, Hόbl J (2007) Towards an empirical vulnerability function for use in debris flow risk assessment. Nat Hazards Earth Syst Sci 7(5):495–506CrossRef
    Furbish DJ, Rice RM (1983) Predicting landslides related to clearcut logging, northwestern California, USA. Mt Res Dev 3(3):253–259CrossRef
    Gamkrelidze E (2003) Geological map of Georgia. Geology State Department of Georgia and the National Oil Company "Saknavtobi", Tbilisi, Georgia
    Glade T (2003) Vulnerability assessment in landslide risk analysis. Beitrag zur Erdsystemforschung 134(2):123–146
    Glade T, Elverfeldt KV (2005) MultiRISK: an innovative concept to model natural risks. Conference: international conference on landslide risk management. In: Geotechnical Society. Landslide risk management, Vancouver
    Glade T, Anderson M, Crozier MJ (eds) (2005). Landslide hazard and risk. Wiley, Chichester. doi:10.​1002/​9780470012659
    Gorum T (2013) toward a better understanding earthquake triggered landslide, an analysis of the size, distribution pattern and characteristics of coseismic landslides in different tectonic and geomorphic environments. PhD thesis, University of Twente, The Netherlands, http://​www.​itc.​nl/​library/​papers_​2013/​phd/​gorum.​pdf
    Guha-Sapir D, Below R, Hoyois P (2015) EM-DAT: international disaster database. www.​emdat.​be (Université Catholique de Louvain – Brussels – Belgium)
    Günther A, Eeckhaut M, Reichenbach P, Hervás J, Malet JP, Foster C, Guzzetti F (2013) New developments in harmonized landslide susceptibility mapping over Europe in the framework of the European soil thematic strategy. In: Margottini C, Canuti P, Sassa K (eds) Landslides science and practice. Springer, Heidelberg, pp 297–301CrossRef
    Günther A, Van Den Eeckhaut M, Malet JP, Reichenbach P, Hervás J (2014a) Climate-physiographically differentiated Pan-European landslide susceptibility assessment using spatial multi-criteria evaluation and transnational landslide information. Geomorphology 224:69–85CrossRef
    Günther A, Hervás J, Van Den Eeckhaut M, Malet JP, Reichenbach P (2014b) Synoptic pan-European landslide susceptibility assessment: The ELSUS 1000 v1 map. In: Sassa K, Canuti P, Yin Y (eds) Landslide science for a safer geoenvironment, vol 1. Springer, Switzerland, pp 117–122CrossRef
    Guzzetti F (2000) Landslide fatalities and the evaluation of landslide risk in Italy. Eng Geol 58(2):89–107CrossRef
    Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 31(1–4):181–216CrossRef
    Hall B, Leahy M.G (2008) Open source approaches in spatial data handling. Advances in geographic information science, vol 2. Springer, Berlin. doi:10.​1007/​978-3-540-74831-1
    Hervás J, Günther A, Reichenbach P, Chacón J, Pasuto A, Malet J. P, Trigila A, Hobbs P, Maquaire O, Tagliavini F, Poyiadji E, Guerrieri L, Montanarella L (2007) Recommendations on a common approach for mapping areas at risk of landslides in Europe. In: Hervás J (ed) Guidelines for mapping areas at risk of landslides in Europe. JRC Report EUR 23093 EN. Office for Official Publications of the European Communities, Luxembourg, pp 45–49
    Hong Y, Adler R, Huffman G (2006) Evaluation of the potential of NASA multi-satellite precipitation analysis in global landslide hazard assessment. Geophys Res Lett. doi:10.​1029/​2006GL028010
    Hong Y, Adler R, Huffman G (2007) Use of satellite remote sensing data in the mapping of global landslide susceptibility. Nat Hazards 43:245–256CrossRef
    ILWIS (2014) The integrated land and water information system. http://​52north.​org/​communities/​ilwis/​ilwis-open/​download
    Jaedicke C, Eeckhaut M, Nadim F, Hervás J, Kalsnes B, Vangelsten BV, Smith JT, Tofani V, Ciurean R, Winter MG, Sverdrup-Thygeson K, Syre E, Smebye H (2013) Identification of landslide hazard and risk ‘hotspots’ in Europe. Bull EngGeol Environ 73(2):325–339. doi:10.​1007/​s10064-013-0541-0
    Kirschbaum DB, Adler R, Hong Y et al (2010) A global landslide catalogue for hazard applications: method, results, and limitations. Nat Hazards 52(3):561–575CrossRef
    Lee EM, Jones DKC (eds) (2004) Landslide risk assessment. Thomas Telford, London
    Leone F, Aste JP, Leroi E (1996) L’évaluation de la vulnerabilité aux mouvements de terrain. Revue de géographie alpine 84(1):35–46CrossRef
    Liu C, Li W, Wu H, Lu P, Sang K, Sun W, Chen W, Hong Y, Li R (2013) Susceptibility evaluation and mapping of China’s landslides based on multi-source data. Nat Hazards 69(3):1477–1495. doi:10.​1007/​s11069-013-0759-y CrossRef
    Malet J, Puissant A, Mathieu A, Van Den Eeckhaut M, Fressard M (2013) Integrating spatial multi-criteria evaluation and expert knowledge for country-scale landslide susceptibility analysis: application to France. In: Margottini C, Canuti P, Sassa K (eds) Landslides science and practice, vol 1. Springer, Heidelberg, pp 303–311CrossRef
    Map of the peak ground acceleration (PGA) with a 10 % exceedance probability in 50 years which was generated in the national earthquake hazard assessment project (2012), Ilia State University, Institute of Earth Sciences
    Nadim F, Kjekstad O, Peduzzi P, Herold C, Jaedicke C (2006) Global landslide and avalanche hotspots. Landslides 3(2):159–174CrossRef
    OAS (1991) Primer on natural hazard management in integrated regional development, Organization of American States, Washington DC (1991) http://​www.​oas.​org/​usde/​publications/​Unit/​oea66e/​begin.​htm
    Petley D (2012) Global patterns of loss of life from landslides. Geology 40(10):927–930CrossRef
    Pradhan B, Lee S (2010) Delineation of landslide hazard areas on Penang Island, Malaysia, by using frequency ratio, logistic regression and artificial neural network models. Environ Earth Sci 60:1037–1054CrossRef
    Radbruch-Hall DH, Colton RB, Davies WE, Lucchitta I, Skipp BA, Varnes DJ (1982), Landslide Overview Map of the Conterminous United States. Geol Surv Professional Paper 1183, U.S. Geological Survey, Washington
    Remondo J, Bonachea J, Cendrero A (2008) Quantitative landslide risk assessment and mapping on the basis of recent occurrences. Geomorphology 94:496–507CrossRef
    Saaty TL (1996) The analytic hierarchy process. McGraw Hill, New York
    Saaty TL, Vargas LG (2001) Models, methods, concepts and applications of the analytichierarchy process. Kluwer, DordrechtCrossRef
    Soeters R, van Westen CJ (1996) Slope instability recognition, analysis, and zonation. In: Turner KA, Schuster RL (eds), Landslides: investigation and mitigation, Transport Research Board Special Report, vol 247, pp 129–177
    Thiery Y, Malet JP, Sterlacchini S, Puissant A, Maquaire O (2007) Landslide susceptibility assessment by bivariate methods at large scales: application to a complex mountainous environment. Geomorphology 92(1–2):38–59CrossRef
    Trigila A, Frattini P, Casagli N, Catani F, Crosta G, Esposito C (2013) Landslide susceptibility mapping at national scale: the Italian case study. Landslide science and practice. Springer, Berlin, pp 287–295
    Tsereteli E, Gaprindashvili G et al (2012) The situation of Natural Egzo-dynamic disaster and Anthropogenic stress risk in Georgia, Action for optimization of their management. Ivane Javakhishvili Tbilisi State University, Vakhushti Bagrationi Institute of Geography, Collected Papers, new series #4(83), Tbilisi, Georgia. pp 50–63
    Tsereteli E, Gaprindashvili M et al (2013) Information bulletin “outcomes of geological disaster in 2012 and their development forecast for 2013 in Georgia. Ministry of Environment and Natural Resources Protection of Georgia, National Environmental Agency, Tbilisi, Georgia
    Tsereteli J, Tsereteli E, Sklifosovskaya Z, Kahadze M (1978) Landslide and Mudflow cadastres of Modern Egzo-geological processes (scale 1:200,000) of Lesser Caucasus and Kakheti region mountain zone. Ministry of Geology of USSR, Georgian Geological Service, Hydro geological and Engineering-Geological expedition of Kvareli party, Tbilisi, Georgia
    Van Den Eeckhaut M, Hervás J, Jaedicke C, Malet JP, Picarelli L (2010) Calibration of logistic regression coefficients from limited landslide inventory data for European-wide landslide susceptibility modelling. In: Malet JP, Glade T, Casagli N (eds) Proceedings of the international conference mountain risks: bringing science to society, Florence, Italy, 24–26 Nov 2010. CERG Editions, Strasbourg, pp 515–521
    van Westen CJ, van Asch ThWJ, Soeters R (2006) Landslide hazard and risk zonation: Why is it still so difficult? Bull Eng Geol Env IAEG 65(2):167–184CrossRef
    van Westen C.J, Straatsma M.W, Turdukulov U.D, Feringa W.F, Sijmons K, Bakhtadze K, Janelidze T, Kheladze N (2012) Atlas of natural hazards and risks of Georgia: e-book. Tbilisi, Caucasus Environmental NGO Network (CENN), University of Twente Faculty of Geo-Information and Earth Observation (ITC). ISBN: 978-9941-0-4310-9
    Vargas LG (1990) An overview of the analytic hierarchy process and its applications. Eur J Oper Res 48:2–8CrossRef
    Varnes DJ, IAEG (1984) Landslide hazard zonation: a review of principles and practice. UNESCO, Darantiere, Paris
    World Bank (2010) http://​data.​worldbank.​org/​country/​georgia#cp_​prop
    WP/WLI (1993) A suggested method for describing the activity of a landslide. Bull Int As Eng Geol, No. 47, pp 53–57
    Yalcin A (2008) GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): comparisons of results and confirmations. Catena 72:1–12CrossRef
    Yang W, Shen L, Shi P (2015) Mapping landslide risk of the world. In: Shi P, Kasperson R (eds) World atlas of natural disaster risk. Springer, Berlin, pp 57–66
    Yoshimatsu H, Abe S (2006) A review of landslide hazards in Japan and assessment of their susceptibility using an analytical hierarchic process (AHP) method. Landslides 3:149-158 (online first) CrossRef
    Ziemer RR, Lewis J, Rice RM, Lisle TE (1991) Modelling the cumulative effects of forest management strategies. J Environ Qual 20(1):36–42CrossRef
  • 作者单位:George Gaprindashvili (1) (3)
    Cees J. Van Westen (2)

    1. Department of Geology, Ministry of Environment and Natural Resources Protection of Georgia, National Environmental Agency, 0112, Tbilisi, Georgia
    3. Institute of Geography, Ivane Javakhishvili Tbilisi State University, 0179, Tbilisi, Georgia
    2. Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, 7500 AE, Enschede, The Netherlands
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Hydrogeology
    Geophysics and Geodesy
    Geotechnical Engineering
    Civil Engineering
    Environmental Management
  • 出版者:Springer Netherlands
  • ISSN:1573-0840
文摘
Landslide risk assessment for large areas at a country level requires a different approach and data than what is standard practice at large scales. The main goal of this research was to design a methodology for a nationwide landslide risk assessment for Georgia taking into account the limitations in data availability and detail, which do not allow the use of physically based models or statistical methods. Given these limitations, we decided to generate a qualitative landslide risk index using spatial multicriteria evaluation (SMCE). An attempt was made to compile a national landslide inventory, using old and partly destroyed archives from the Soviet period, combined with information from annual field surveys. A web-based interface for the reporting of landslide events was developed to improve the updating of the inventory in future. Relevant factor maps were prepared for the entire country, partly based on remote sensing data. As the available landslide inventory was not sufficient to use statistical methods, the factor maps were weighted using the expert-based SMCE method, and the resulting susceptibility map was validated using the available landslide inventory. The inventory was also used to make an estimation of the spatial probability of landslide occurrence within the various susceptibility classes. The resulting map was used in combination with element-at-risk maps to calculate exposure maps and to make a tentative assessment of the expected landslide losses in a 50-year time period . Keywords Landslide National scale Susceptibility Vulnerability Qualitative risk SMCE Georgia

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700